
CHAPTER ONE

Introduction

The propagation of seismic body waves in complex, laterally varying 3-D layered
structures is a complicated process. Analytical solutions of the elastodynamic
equations for such types of media are not known. Themost common approaches to

the investigation of seismic wavefields in such complex structures are (a) methods based on
direct numerical solutions of the elastodynamic equation, such as the finite-difference and
finite-element methods, and (b) approximate high-frequency asymptotic methods. Both
methods are very useful for solving certain types of seismic problems, have their own
advantages and disadvantages, and supplement each other suitably.

Wewill concentrate heremainly on high-frequency asymptoticmethods, such as the ray
method. The high-frequency asymptotic methods are based on an asymptotic solution of
the elastodynamic equation. They can be applied to compute not only rays and travel times
but also the ray-theory amplitudes, synthetic seismograms, and particle ground motions.
These methods are well suited to the study of seismic wavefields in smoothly inhomoge-
neous 3-D media composed of thick layers separated by smoothly curved interfaces. The
high-frequency asymptotic methods are very general; they are applicable both to isotropic
and anisotropic structures, to arbitrary 3-D variations of elastic parameters and density,
to curved interfaces arbitrarily situated in space, to an arbitrary source-receiver configu-
ration, and to very general types of waves. High-frequency asymptotic methods are also
appropriate to explain typical “wave” phenomena of seismic waves propagating in complex
3-D isotropic and anisotropic structures. The amplitudes of seismic waves calculated by
asymptotic methods are only approximate, but their accuracy is sufficient to solve many
3-D problems of practical interest.

Asymptotic high-frequency solutions of the elastodynamic equation can be sought in
several alternative forms. In the ray method, they are usually sought in the form of the
so-called ray series (see Babich 1956; Karal and Keller 1959). For this reason, the ray
method is also often called the ray-series method, or the asymptotic ray theory (ART).

The seismic ray method can be divided into two parts: kinematic and dynamic. The
kinematic part consists of the computation of seismic rays, wavefronts, and travel times.
The dynamic part consists of the evaluation of the vectorial complex-valued amplitudes of
the displacement vector and the computation of synthetic seismograms and particle ground
motion diagrams.

Themost strict approach to the investigation of both kinematic and dynamic parts of the
ray method consists of applying asymptotic high-frequency methods to the elastodynamic
equations. The kinematic part of the ray method, however, may also be attacked by some
simpler approaches, for example, by variational principles (Fermat principle). It is even

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521018226 - Seismic Ray Theory
V. Cerveny
Excerpt
More information

http://www.cambridge.org/0521018226
http://www.cambridge.org
http://www.cambridge.org


2 INTRODUCTION

possible to develop thewhole kinematic part of the seismic raymethodusing thewell-known
Snell’s law. Such approaches have been used for a long time in seismology and have given
a number of valuable results. There may be, however, certain methodological objections to
their application. In the application of Snell’s law, we must start from a model consisting
of homogeneous layers with curved interfaces and pass from this model to a smoothly
varying model by increasing the number of interfaces. Such a limiting process offers very
useful seismological insights into the ray tracing equations and travel-time computations in
inhomogeneousmedia, but it ismore or less intuitive. TheFermat principle has been used in
seismology as a rule independently for P andSwaves propagating in inhomogeneousmedia.
The elastic wavefield, however, can be separated into P and S waves only in homogeneous
media (and perhaps in some other simple structures). In laterally varyingmediawith curved
interfaces, the wavefield is not generally separable into P and S waves; the seismic wave
process is more complicated. Thus, we do not have any exact justification for applying the
principle independently to P and S waves. In media with larger velocity gradients, the ray
method fails due to the strong coupling of P and S waves. Only the approach based on the
asymptotic solution of the elastodynamic equation gives the correct answer: the separation
of the seismic wavefield in inhomogeneous media into two independent wave processes (P
and S) is indeed possible, but it is only approximate, in that it is valid for high frequencies
and sufficiently smooth media only.

Similarly, certain properties of vectorial complex-valued amplitudes of seismic body
waves can be derived using energy concepts, particularly using the expressions for the
energy flux. Such an approach is again very useful for intuitive physical understanding of
the amplitude behavior, but it does not give the complete answer. The amplitudes of seismic
bodywaves have a vectorial complex-valued character. Thewavesmay be elliptically polar-
ized (S waves) and may include phase shifts. These phase shifts influence the waveforms.
The energy principles do not yield a complete answer in such situations. Consequently,
they cannot be applied to the computation of synthetic seismograms and particle ground
motion diagrams.

Recently, several new concepts and methods have been proposed to increase the pos-
sibilities and efficiency of the standard ray method; they include dynamic ray tracing,
the ray propagator matrix, and paraxial ray approximations. In the standard ray method,
the travel time and the displacement vector of seismic body waves are usually evaluated
along rays. Thus, if we wish to evaluate the seismic wavefield at any point, we must find
the ray that passes through this point (boundary value ray tracing). The search for such
rays sometimes makes the application of the standard ray method algorithmically very
involved, particularly in 3-D layered structures. The paraxial ray methods, however, allow
one to compute the travel time and displacement vector not only along the ray but also in
its paraxial vicinity. It is not necessary to evaluate the ray that passes exactly through the
point. The knowledge of the ray propagator matrix makes it possible to solve analytically
many complex wave propagation problems that must be solved numerically by iterations in
the standard ray method. This capability greatly increases the efficiency of the ray method,
particularly in 3-D complex structures.

The final ray solution of the elastodynamic equation is composed of elementary waves
corresponding to various rays connecting the source and receiver. Each of these elementary
waves (reflected, refracted, multiply reflected, converted, and the like) is described by
its own ray series. In practical seismological applications, the higher terms of the ray
series have not yet been broadly used. In most cases, the numerical modeling of seismic
wavefields and the interpretation of seismic data by the ray method have been based on the
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INTRODUCTION 3

zeroth-order leading term of the ray series. In this book, mainly the zeroth-order terms
of the ray series are considered. These zeroth-order terms, however, are treated here in a
great detail. Concise expressions for the zeroth-order ray-theory Green function for a point
source and receiver situated at any place in a general 3-D, layered and blocked, structure
are derived. For a brief treatment of the higher-order terms of the ray series for the scalar
(acoustic) and vectorial (elastic) waves see Sections 5.6 and 5.7.

As is well known, the ray method is only approximate, and its applications to certain
seismological problems have some restrictions. Recently, several new extensions of the ray
method have been proposed; these extensions overcome, partially or fully, certain of these
restrictions. They include the method of summation of Gaussian beams, the method of
summation of Gaussian wave packets, and the Maslov-Chapman method. These methods
have been found very useful in solving various seismological problems, even though certain
aspects of these methods are still open for future research.

The whole book may be roughly divided into five parts.

In the first part, the main principles of the asymptotic high-frequency method as it is
used to solve the elastodynamic equation in a 3-D laterally varyingmediumare briefly
explained and discussed. A particularly simple approach is used to derive and discuss
the most important equations and related wave phenomena from the seismological
point of view. It is shown how the elastic wavefield is approximately separated into
individual elementary waves. These individual waves propagate independently in a
smoothly varying structure, their travel times are controlled by the eikonal equation,
and their amplitudes are controlled by the transport equation. Various important phe-
nomena of seismic wavefields connected with 3-D lateral variations and with curved
interfaces are derived and explained, both for isotropic and anisotropic media. Great
attention is devoted to the differences between elastic waves propagating in isotropic
and anisotropic structures. Exact and approximate expressions for acoustic and elas-
todynamic Green functions in homogeneous media are also derived. See Chapter 2.

The second part is devoted to ray tracing and travel-time computation in 3-D structures.
The ray tracing and travel-time computation play an important role in many seis-
mological applications, particularly in seismic inversion algorithms, even without a
study of ray amplitudes, polarization, and wavelet shape. In addition to individual
rays, the ray fields are also introduced in this part. The singular regions of the ray
fields and related wave phenomena are explained. Special attention is devoted to
the definition, computation, and physical meaning of the geometrical spreading. See
Chapter 3.

The third part is devoted to dynamic ray tracing and paraxial ray methods. The paraxial
raymethods can be used to compute the travel time and other important quantities not
only along the ray but also in its vicinity. Concepts of dynamic ray tracing and of the
ray propagator matrix are explained. The dynamic ray tracing is introduced both in
ray-centered and Cartesian coordinates, for isotropic and anisotropic structures. Var-
ious important applications of the paraxial ray method are explained. See Chapter 4.

The fourth part of the book discusses the computation of ray amplitudes. Very general
expressions for ray amplitudes of an arbitrary multiply reflected/transmitted (possi-
bly converted) seismic body wave propagating in acoustic, elastic isotropic, elastic
anisotropic, laterally varying, layered, and block structures are derived. The medium
may also be weakly dissipative. Both the source and the receiver may be situated
either in a smooth medium or at a structural interface or at the Earth’s surface. Final
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4 INTRODUCTION

equations for the amplitudes of the ray-theory elastodynamic Green function is lat-
erally varying layered structures are derived. Great attention is also devoted to the
ray-series solutions, both in the frequency and the time domain. The seismological
applications of higher-order terms of the ray series are discussed. See Chapter 5.

The fifth part explains the computation of ray synthetic seismograms and ray synthetic
particle ground motions. Several possibilities for the computation of ray synthetic
seismograms are proposed: in the frequency domain, in the time domain, and by
the summation of elementary seismograms. Advantages and disadvantages of indi-
vidual approaches are discussed. Certain of these approaches may be used even for
dissipative media. The basic properties of linear, elliptic, and quasi-elliptic polariza-
tion are described. The causes of quasi-elliptic polarization of S waves are briefly
summarized. See Chapter 6.

This book, although very extensive, is still not able to cover all aspects of the seismic
ray method. This would increase its length inadmissibly. To avoid this, the author has not
discussedmany important subjects regarding the seismic raymethod (or related closely to it)
or has discussed them only briefly. Nevertheless, the reader should remember that the main
aim of this book is to present a detailed and complete description of the seismic ray method
with a real-valued eikonal for 3-D, laterally varying, isotropic or anisotropic, layered, and
block structures. The author, however, does not and had no intention of including all the
extensions and applications of the seismic ray method and all the problems related closely
to it. We shall now briefly summarize several important topics that are related closely to
the seismic ray method but that will not be treated in this book or that will be treated more
briefly than they would deserve.

1. Although the seismic ray method developed in this book plays a fundamental role
in various inverse problems of seismology and of seismic exploration and in many
interpretational procedures, the actual inversion and interpretational procedures
are not explicitly discussed here. These procedures include seismic tomography,
seismic migration, and the location of earthquake sources, among others.

2. The seismic ray method has found important applications in forward and inverse
scattering problems. With the exception of a brief introduction in Section 2.6.2; the
scattering problems themselves, however, are not discussed here.

3. The seismic raymethodmay be applied only to structural models that satisfy certain
smoothness criteria. The construction of 2-D and 3-D models that would satisfy
such criteria is a necessary prerequisite for the application of the seismic raymethod,
but is not discussed here at all. Mostly, it is assumed that the model is specified in
Cartesian rectangular coordinates. Less attention is devoted to models specified in
curvilinear coordinate systems (including spherical); see Section 3.5.

4. The seismic ray method developed here may be applied to high-frequency seismic
body waves propagating in deterministic, perfectly elastic, isotropic or anisotropic
media. Other types of waves (such as surface waves) are only briefly mentioned.
Moreover, viscoelastic, poroelastic, and viscoporoelasticmodels are not considered.
The exception is a weakly dissipative (and dispersive) model that does not require
complex-valued ray tracing; see Sections 5.5 and 6.3.5. In Sections 2.6.4 and 5.6.8,
the space-time ray method and the ray method with a complex eikonal are briefly
discussed, even though they deserve considerably more attention. The computation
of complex-valued rays in particular (for example, in dissipative media, in the
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INTRODUCTION 5

caustic shadow, and in some other singular regions) may be very important in
applications. Actually, the seismic ray method, without considering complex rays,
is very incomplete.

5. Various extensions of the seismic ray method have been proposed in the literature.
These extensions include the asymptotic diffraction theory, the method of edge
waves, the method of the parabolic wave equation, the Maslov-Chapman method,
and the method of summation of Gaussian beams or Gaussian wave packets, among
others. Here we shall treat, in some detail, only the extensions based on the sum-
mation of paraxial ray approximations and on the summation of paraxial Gaussian
beams; see Section 5.8. Themethod based on the summation of paraxial ray approx-
imations yields integrals close or equal to those of the Maslov-Chapman method.
The other extensions of the seismic ray method are discussed only very briefly in
Section 5.9, but the most important references are given there.

6. No graphical examples of the computation of seismic rays, travel times, ray ampli-
tudes, synthetic seismograms, and particle ground motions in 3-D complex models
are presented for two reasons. First, most figures would have to be in color, as 3-D
models are considered. Second, the large variety of topics discussed in this book
would require a large number of demonstration figures. This would increase the
length and price of the book considerably. The interested readers are referred to the
references given in the text, and to the www pages of the Consortium Project
“Seismic Waves in 3-D Complex Structures”; see http://seis.karlov.mff.cuni.cz/
consort/main.htm for some examples.

The whole book has a tutorial character. The equations presented are (in most cases)
derived and discussed in detail. For this reason, the book is rather long. Owing to the
extensive use of various matrix notations and to the applications of several coordinate
systems and transformation matrices, the resulting equations are very concise and simply
understandable from a seismological point of view. Although the equations are given in a
concise and compact form, the whole book is written in an algorithmic way: most of the
expressions are specified to the last detail and may be directly used for programming.

To write the complicated equations of this book in the most concise form, we use
mostly matrix notation. To distinguish between 2 × 2 and 3 × 3 matrices, we shall use
the circumflex (ˆ) above the letter for 3 × 3 matrices. If the same letter is used for both
2 × 2 and 3 × 3 matrices; for example, M and M̂, matrix M denotes the 2 × 2 left upper
submatrix of M̂:

M̂ =
⎛
⎝ M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠ , M =

(
M11 M12

M21 M22

)
.

Similarly, we denote by q̂ = (q1, q2, q3)T the 3 × 1 column matrix and by q = (q1, q2)T

the 2 × 1 column matrix. The symbol T as a superscript denotes the matrix transpose.
Similarly, the symbol −1T as a superscript denotes the transpose of the inverse, A−1T =
(A−1)T , Â−1T = (Â−1)T .

In several places, we also use 4 × 4 and 6 × 6 matrices. We denote them by boldface
letters in the same way as the 2 × 2 matrices; this notation cannot cause any misunder-
standing.

In parallel with matrix notation, we also use component notation where suitable. The
indices always have the form of right-hand suffixes. The uppercase suffixes take the values
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6 INTRODUCTION

1 and 2, lowercase indices 1, 2 and 3, and greek lowercase indices 1, 2, 3 and 4. In this way,
MIJ denote elements of M and Mi j elements of M̂. We also denote f (xi ) = f (x1, x2, x3),
f (xI ) = f (x1, x2), [ f (xi )]xk=0 = f (0, 0, 0), [ f (xi )]xK =0 = f (0, 0, x3), [ f (xi )]x1=0 =
f (0, x2, x3). The Einstein summation convention is used throughout the book. Thus,
MI J qJ = MI1q1 + MI2q2 (I = 1 or 2), Mi j q j = Mi1q1 + Mi2q2 + Mi3q3 (i = 1, 2 or 3).
Similarly, Mi J denotes the elements of the 3 × 2 submatrix of matrix M̂.

We also use the commonly accepted notation for partial derivatives with respect to
Cartesian coordinates xi (for example, λ,i = ∂λ/∂xi , ui, j i = ∂2ui/∂x j∂xi , σi j, j =
∂σi j/∂x j ). In the case of velocities, we shall use a similar notation to denote the partial
derivatives with respect to the ray-centered coordinates. For a more detailed explanation,
see the individual chapters.

In some equations, the classical vector notation is very useful. We use arrows above
letters to denote the 3-D vectors. In this way, any 3-D vector may be denoted equivalently
as a 3 × 1 column matrix or as a vectorial form.

In complex-valued quantities, z = x + iy, the asterisk is used as a superscript to de-
note a complex-conjugate quantity, z∗ = x − iy. The asterisk between two time-dependent
functions, f1(t) ∗ f2(t), denotes the time convolution of these two functions, f1(t) ∗ f2(t) =∫ ∞

−∞ f1(τ ) f2(t − τ )dτ .
The book does not give a systematic bibliography on the seismic ray method. For

many other references, see the books and review papers on the seismic ray method and on
some related subjects (Červený and Ravindra 1971; Červený, Molotkov, and Pšenčı́k 1977;
Hubral and Krey 1980; Hanyga, Lenartowicz, and Pajchel 1984; Bullen and Bolt 1985;
Červený 1985a, 1985b, 1987a, 1989a; Chapman 1985, in press; Virieux 1996; Dahlen and
Tromp 1998). The ray method has been also widely used in other branches of physics,
mainly in electromagnetic theory (see, for example, Synge 1954; Kline and Kay 1965;
Babich and Buldyrev 1972; Felsen and Marcuvitz 1973; Kravtsov and Orlov 1980).
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CHAPTER TWO

The Elastodynamic Equation
and Its Simple Solutions

The seismic ray method is based on asymptotic high-frequency solutions of the
elastodynamic equation. We assume that the reader is acquainted with linear elas-
todynamics and with the simple solutions of the elastodynamic equation in a ho-

mogeneous medium. For the reader’s convenience, we shall briefly discuss all these topics
in this chapter, particularly the plane-wave and point-source solutions of the elastodynamic
equation. We shall introduce the terminology, notations, and all equations we shall need in
the following chapters. In certain cases, we shall only summarize the equations without de-
riving them, mainly if such equations are known from generally available textbooks. This
applies, for example, to the basic concepts of linear elastodynamics. In other cases, we
shall present the main ideas of the solution, or even the complete derivation. This applies,
for example, to the Green functions for acoustic, elastic isotropic and elastic anisotropic
homogeneous media.

In addition to elastic waves in solid isotropic and anisotropic models, we shall also
study pressure waves in fluid models. In this case, we shall speak of the acoustic case.
There are two main reasons for studying the acoustic case. The first reason is tutorial.
All the derivations for the acoustic case are very simple, clear, and comprehensible. In
elastic media, the derivations are also simple in principle, but they are usually more cum-
bersome. Consequently, we shall mostly start the derivations with the acoustic case, and
only then shall we discuss the elastic case. The second reason is more practical. Pres-
sure waves in fluid models are often used as a simple approximation of P elastic waves
in solid models. For example, this approximation is very common in seismic exploration
for oil.

The knowledge of plane-wave solutions of the elastodynamic equation in homogeneous
media is very useful in deriving approximate high-frequency solutions of elastodynamic
equation in smoothly inhomogeneous media. Such approximate high-frequency solutions
in smoothly inhomogeneousmedia are derived in Section 2.4. In the terminology of the ray-
series method, such solutions represent the zeroth-order approximation of the ray method.
The approach we shall use in Section 2.4 is very simple and is quite sufficient to derive
all the basic equations of the zeroth-order approximation of the ray method for acoustic,
elastic isotropic, and elastic anisotropic structures. In the acoustic case, the approach yields
the eikonal equation for travel times and the transport equation for scalar amplitudes. In
the elastic case, it yields an approximate high-frequency decomposition of the wave field
into the separate waves (P and S waves in isotropic; qP, qS1, and qS2 in anisotropic media).
Thereafter, it yields the eikonal equations for travel times, the transport equations for
amplitudes, and the rules for the polarization of separate waves.

7
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8 ELASTODYNAMIC EQUATION AND ITS SIMPLE SOLUTIONS

Note that Section 2.4 deals only with the zeroth-order approximation of the ray-series
method. The higher-order terms of the ray series are not discussed here, but will be
considered in Chapter 5 (Sections 5.6 for the acoustic case and Section 5.7 for the elastic
case). From the systematic and theoretical points of view, it would be more convenient
to start the whole treatment directly with the ray-series method, and only then discuss
the zeroth-order approximation, as a leading term of the ray-series method. The reason
why we have moved the ray-series treatment to Sections 5.6 and 5.7 is again tutorial. The
complete treatment of rays, ray-theory travel times, and paraxial methods in Chapters 3
and 4 is based on eikonal equations only. Similarly, all the treatments of ray amplitudes
in Sections 5.1 through 5.5 are based on transport equations only. Thus, we do not need
to know the higher-order terms of the ray series in Chapters 3 and 4 and in Sections 5.1
through 5.5; the results of Section 2.4 are sufficient there. Consequently, the whole ray-
series treatment, which is more cumbersome than the derivation of Section 2.4, can be
moved to Sections 5.6 and 5.7. Most of the recent applications of the seismic ray method
are based on the zeroth-order approximation of the ray series. Consequently, most readers
will be interested in the relevant practical applications of the seismic ray method, such as
ray tracing, travel time, and ray amplitude computations. These readers need not bother
with the details of the ray-series method; the zeroth-order approximation, derived in Sec-
tion 2.4, is sufficient for them. The readers who wish to know more about the ray-series
method and higher order terms of the ray series can read Sections 5.6 and 5.7 immediately
after reading Section 2.4. Otherwise, no results of Sections 5.6 and 5.7 are needed in the
previous sections.

Section 2.5 discusses the point-source solutions and appropriate Green functions for
homogeneous fluid, elastic isotropic, and elastic anisotropic media. In all three cases, exact
expressions for the Green function are derived uniformly. For elastic anisotropic media,
exact expressions are obtained only in an integral form. Suitable asymptotic high-frequency
expressions are, however, given in all three cases. These expressions are used in Chapter 5
to derive the asymptotic high-frequency expressions for the ray-theory Green function
corresponding to an arbitrary elementary wave propagating in a 3-D laterally varying
layered and blocked structure (fluid, elastic isotropic, elastic anisotropic).

The Green function corresponds to a point source, but it may be used in the repre-
sentation theorem to construct considerably more complex solutions of the elastodynamic
equation. If we are interested in high-frequency solutions, the ray-theory Green function
may be used in the representation theorems. For this reason, representation theorems and
the ray-theory Green functions play an important role even in the seismic ray method. The
representation theorems are derived and briefly discussed in Section 2.6. The same sec-
tion also discusses the scattering integrals and the first-order Born approximation. These
integrals contain the Green function. If we use the ray-theory Green function in these inte-
grals, the resulting scattering integrals can be used broadly in the seismic ray method and
in relevant applications. Such approaches have recently found widespread applications in
seismology and seismic exploration.

2.1 Linear Elastodynamics

The basic concepts and equations of linear elastodynamics have been explained in many
textbooks and papers, including some seismological literature. We refer the reader to
Bullen (1965), Auld (1973), Pilant (1979), Aki and Richards (1980), Hudson (1980a),
Ben-Menahem and Singh (1981), Mura (1982), Bullen and Bolt (1985), and Davis (1988),
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2.1 L INEAR ELASTODYNAMICS 9

where many other references can be found. For a more detailed treatment, see Love (1944),
Landau and Lifschitz (1965), Fung (1965), and Achenbach (1975). Here we shall introduce
only the most useful terminology and certain important equations that we shall need later.
We shall mostly follow and use the notations of Aki and Richards (1980).

To write the equations of linear elastodynamics, some knowledge of tensor calculus
is required. Because we wish to make the treatment as simple as possible, we shall use
Cartesian coordinates xi and Cartesian tensors only.

We shall use the Lagrangian description of motion in an elastic continuum. In the
Lagrangian description, we study the motion of a particle specified by its original position
at some reference time. Assume that the particle is located at the position described by
Cartesian coordinates xi at the reference time. The vector distance of a particle at time t
from position �x at the reference time is called the displacement vector and is denoted by
�u. Obviously, �u = �u(�x, t).

We denote the Cartesian components of the stress tensor by τi j (�x, t) and the Cartesian
components of the strain tensor by ei j (�x, t). Both tensors are considered to be symmetric,

τi j = τ j i , ei j = e ji . (2.1.1)

The strain tensor can be expressed in terms of the displacement vector as follows:

ei j = 1
2 (ui, j + u j,i ). (2.1.2)

The stress tensor τi j (�x, t) fully describes the stress conditions at any point �x . It can be used
to compute traction �T acting across a surface element of arbitrary orientation at �x ,

Ti = τi j n j , (2.1.3)

where �n is the unit normal to the surface element under consideration.
The elastodynamic equation relates the spatial variations of the stress tensor with the

time variations of the displacement vector,

τi j, j + fi = ρüi , i = 1, 2, 3. (2.1.4)

Here fi denote the Cartesian components of body forces (force per volume), and ρ is the
density. The term with fi in elastodynamic equation (2.1.4) will also be referred to as the
source term. Quantities üi = ∂2ui/∂t2, i = 1, 2, 3, represent the second partial derivatives
of ui with respect to time (that is, the Cartesian components of particle acceleration �̈u). In
a similar way, we shall also denote the Cartesian components of particle velocity ∂ui/∂t
by vi or u̇i .

The introduced quantities are measured in the following units: stress τi j and traction
Ti in pascals (Pa; that is, in kg m−1 s−2), the components of body forces fi in newtons
per cubic meter (N/m3; that is, in kgm−2 s−2), density ρ in kilograms per cubic meter
(kg m−3), and displacement components ui in meters (m). Finally, strain components ei j

are dimensionless.

2.1.1 Stress-Strain Relations

In a linear, anisotropic, perfectly elastic solid, the constitutive stress-strain relation is given
by the generalized Hooke’s law,

τi j = ci jklekl . (2.1.5)

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521018226 - Seismic Ray Theory
V. Cerveny
Excerpt
More information

http://www.cambridge.org/0521018226
http://www.cambridge.org
http://www.cambridge.org


10 ELASTODYNAMIC EQUATION AND ITS SIMPLE SOLUTIONS

Here ci jkl are components of the elastic tensor. The elastic tensor has, in general,
3 × 3 × 3 × 3 = 81 components. These components, however, satisfy the following sym-
metry relations:

ci jkl = c jikl = ci jlk = ckli j , (2.1.6)

which reduce the number of independent components of the elastic tensor from 81 to 21.
The components ci jkl of the elastic tensor are also often called elastic constants, elastic

moduli, elastic parameters, or stiffnesses. In this book, we shall mostly call them elastic
moduli. They are measured in the same units as the stress components (that is, in Pa =
kgm−1 s−2).

If we express ekl in terms of the displacement vector components, see Equation (2.1.2),
and take into account symmetry relations (2.1.6), we can also express Equation (2.1.5) in
the following form:

τi j = ci jkluk,l . (2.1.7)

The components of elastic tensor ci jkl are also often expressed in an abbreviated Voigt
form, with two indices instead of four. We shall denote these components by capital letters
Cmn . Cmn is formed from ci jkl in the following way: m corresponds to the first pair of
indices, i, j and n to the second pair, k, l. The correspondence m → i, j and n → k, l is
as follows: 1 → 1, 1; 2 → 2, 2; 3 → 3, 3; 4 → 2, 3; 5 → 1, 3; 6 → 1, 2.

Due to symmetry relations (2.1.6), the 6 × 6 matrix Cmn fully describes the elastic
moduli of an arbitrary anisotropic elastic medium. It is also symmetric, Cmn = Cnm and is
commonly expressed in the form of a table containing 21 independent elastic moduli:

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.1.8)

The elastic moduli Cmn below the diagonal (m > n) are not shown because the table is
symmetrical, Cmn = Cnm . The diagonal elements in the table are always positive for a solid
medium, but the off-diagonal elements may be arbitrary (positive, zero, negative). Note
that Cmn is not a tensor.

A whole hierarchy of various anisotropic symmetry systems exist. They are described
and discussed in many books and papers; see, for example, Fedorov (1968), Musgrave
(1970), Auld (1973), Crampin and Kirkwood (1981), Crampin (1989), and Helbig (1994).
The most general is the triclinic symmetry, which may have up to 21 independent elastic
moduli. In simpler (higher symmetry) anisotropic systems, the elastic moduli are invariant
to rotation about a specific axis by angle 2π/n (n-fold axis of symmetry). We shall briefly
discuss only two such simpler systems which play an important role in recent seismology
and seismic exploration: orthorhombic and hexagonal.

In the orthorhombic symmetry system, three mutually perpendicular twofold axes of
symmetry exist. The number of significant elastic moduli in the orthorhombic system is
reduced to nine. If the Cartesian coordinate system being considered is such that its axes

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521018226 - Seismic Ray Theory
V. Cerveny
Excerpt
More information

http://www.cambridge.org/0521018226
http://www.cambridge.org
http://www.cambridge.org

