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Introduction

By now the “chaos revolution” has reached nearly every branch of the
natural sciences. In fact, chaos is everywhere. To name but a few exam-
ples, we talk about chaotic weather patterns, chaotic chemical reactions
and the chaotic evolution of insect populations. Atomic and molecular
physics are no exceptions. At first glance this is surprising since atoms
and molecules are well described by the linear laws of quantum mechan-
ics, while an essential ingredient of chaos is nonlinearity in the dynamic
equations. Thus, chaos and atomic physics seem to have little to do with
each other. But recently, atomic and molecular physicists have pushed
the limits of their experiments to such high quantum numbers that it
starts to make sense, in the spirit of Bohr’s correspondence principle, to
compare the results of atomic physics experiments with the predictions of
classical mechanics, which, for the most part, show complexity and chaos.
The most striking observation in recent years has been that quantum sys-
tems seem to “know” whether their classical counterparts display regular
or chaotic motion. This fact can be understood intuitively on the basis
of Feynman’s version of quantum mechanics. In 1948 Feynman showed
that quantum mechanics can be formulated on the basis of classical me-
chanics with the help of path integrals. Therefore it is expected that the
quantum mechanics of an atom or molecule is profoundly influenced, but
of course not completely determined, by the qualitative behaviour of its
underlying classical mechanics. To be specific, we expect to see qualita-
tively different quantum behaviour in an atom or molecule depending on
whether its classical mechanics is regular or chaotic.

The central theme of classical deterministic chaos is the occurrence
of the most astonishing complexity in the simplest systems (see, e.g.,
Schuster (1988), Ott (1993)). And what could be simpler than, e.g., a
hydrogen atom in a strong magnetic field? On second thought, however,
we realize that on the classical level this system possesses the crucial
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2 1 Introduction

ingredient for the emergence of chaos: nonlinearity. In this case the
nonlinearity consists in the combined interactions of the electron with
the proton and the applied magnetic field. Sure enough, it was shown
by many scientists (see, e.g., Friedrich (1990) and references therein)
that chaos does indeed occur in the classical version of the hydrogen
atom in a magnetic field. Therefore, we expect complex behaviour to
appear in the quantum mechanics of this system. While complexity may
reveal itself in many quantum observables, the most familiar observable
is the energy. Fig. 1.1(a) shows the energy spectrum of the hydrogen
atom as a function of the magnetic field in a range of principal quantum
numbers around n = 40. At first glance the spectrum appears “wild” and
“chaotic”. On second thought one might argue that Fig. 1.1(a) is merely
“congested”, i.e. an assembly of many hydrogen lines, all in principle
quite regular, but producing an irregular effect simply by plotting many
of them in one single figure. To demonstrate that this is not so, i.e.
that something fundamentally new is going on in Fig. 1.1(a), we show
a magnification of the framed area of Fig. 1.1(a) in Fig. 1.1(b). The
magnification reveals that Fig. 1.1(a) actually consists of hundreds of
avoided crossings which force initially “regular” energy levels to bend
in “erratic” ways as a function of the magnetic field strength producing
considerable complexity in the energy spectrum. The bending of the
energy levels makes it very hard, if not impossible, to assign quantum
numbers to the individual energy levels at fixed magnetic field strength.
In fact, it was argued by Percival in 1973 that one of the key quantum
signatures of chaos is the loss of our ability to assign quantum numbers.

Chaos does not only wreak havoc in otherwise orderly atomic spec-
tra, it also provides a natural framework, indeed a common language, in
which one can discuss such seemingly unrelated systems as, e.g., ballistic
electrons in mesoscopic semiconductor structures, the helium atom, and
Rydberg atoms in strong external fields. All these systems have one fea-
ture in common: their classical counterparts are chaotic. Chaos imprints
its presence on their spectra and manifests itself in spectral features which
are very similar for all these systems (universality).

Especially in the highly excited semiclassical regime the quantum prop-
erties and dynamics of atomic and molecular systems are most naturally
discussed within the framework of chaos. Not only does chaos theory
help to characterize spectra and wave functions, it also makes specific
predictions about the existence of new quantum dynamical regimes and
hitherto unknown exotic states. Examples are the discovery of “frozen
planet” states in the helium atom by Richter and Wintgen (1990a) and
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Fig. 1.1. Energy levels of the hydrogen atom as a function of magnetic field
strength B. (a) Transition from order to “chaos” for increasing magnetic field
strength (Friedrich and Wintgen (1989)). (b) A magnification of the framed
detail in (a) resolves the complex behaviour of the energy levels in the E — B

plane for high magnetic field strengths.
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4 1 Introduction

the prediction of a “gas of resonances” in doubly excited helium (see
Chapter 10).

But chaos is more than a tool. There are as yet unsolved philosophical
problems in its wake. While relativity and quantum mechanics necessi-
tated — and in fact originated from - a careful analysis of the concepts of
space, time and measurement, chaos, already on the classical level, forces
us to re-think the concepts of determinism and predictability. Thus, clas-
sical mechanics could not be further removed from the dusty subject it
is usually portrayed as. On the contrary: it is at the forefront of modern
scientific research. Since path integrals provide a link between classi-
cal and quantum mechanics, conceptual and philosophical problems with
classical mechanics are bound to manifest themselves on the quantum
level. We are only at the beginning of a thorough exploration of these
questions. But one fact is established already: chaos has a profound in-
fluence on the quantum mechanics of atoms and molecules. This book
presents some of the most prominent examples.

Among the atomic systems discussed in this book we find the helium
atom (Chapter 10). This topic rings a bell. It featured prominently
in the final stages of the “old quantum mechanics”. The old pre-1925
quantum theory was based on classical notions such as periodic orbits.
Periodic orbit quantization of the helium atom within the framework of
the old quantum mechanics did not work out and presented an insur-
mountable problem (see, e.g., Van Vleck (1922)). But all the difficulties
with the old quantum theory were solved with one blow when Heisenberg,
Born, Jordan and Schrédinger developed the “new” quantum mechanics
in 1925 and 1926. Heisenberg in particular was very proud of having
eliminated the concept of classical orbits from the structure of quantum
mechanics (Heisenberg (1969)). But his joy proved premature. Periodic
orbits are very much alive! In fact, they currently enjoy a key role as
one of the few known tools for the systematic semiclassical quantization
of classically chaotic systems (Gutzwiller (1990)). Thus, the fall of the
old quantum mechanics was not primarily due to the use of classical con-
cepts, but to the inappropriate use of classical procedures, such as adding
probabilities instead of amplitudes. Also, it was not known then how to
incorporate properly the intricacies of classical mechanics, epitomized in
the phenomenon of chaos. We note that the difficulties of incorporating
the ideas of chaos into the old quantum theory were well appreciated
by Paul Ehrenfest’s student Burgers (1916), Einstein (1917) and Dirac
(1925).

In order to develop the mind set and methods needed to understand
and use the fingerprints of chaos in quantum mechanics, we must set to
work. Our journey through chaos in atomic physics begins head-on with
a schematic, but physical, example of chaos in Section 1.1. The remaining
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sections of Chapter 1 present a general discussion of some of the philo-
sophical implications of the existence of chaos in the classical world. For-
mal tools and concepts, indispensable for a deeper understanding of chaos,
are presented in Chapter 2. Chapter 3 is essentially an elementary re-
view of Lagrangian and Hamiltonian mechanics with special emphasis on
the role of chaos in classical mechanics. In Section 3.2, e.g., we present a
simple physical system (the double pendulum) which shows many generic
features of a chaotic Hamiltonian system. Chaos in quantum mechanics
is discussed in Chapter 4. The main point here is to eliminate some of
the confusion surrounding the topic of “quantum chaos” by proposing a
classification of quantum systems into three categories: (I) systems whose
quantum dynamics is not chaotic, but which “feel” the underlying clas-
sical chaos (“quantized chaos”); (II) systems whose quantum dynamics
is fully chaotic, but which are coupled to at least one classical degree
of freedom in the sense of a dynamic Boru-Oppenheimer approximation
(“semi-quantum chaos”); and (III) systems that are fully quantized and
show fully developed chaos. While the existence of type I and type II sys-
tems is confirmed and their usefulness in atomic and molecular physics
established, the very existence of type III systems is still much debated.
Therefore, it may well be established by future research that category
III, no doubt the most interesting of the three, is empty. With Chapter
4 we finish the introductory part of the book, whose main purpose is to
provide the reader with the necessary tools and concepts for a thorough
understanding of the remaining chapters of the book, which deal with the
manifestations of chaos in specific atomic and molecular physics systems.
Chapter 5, a study of the physics of an impulsively driven rotor, builds a
bridge between the more formal introductory parts of the book and the
applications. It links with the introductory chapters by providing fur-
ther tools needed for the discussion of driven atomic physics systems, but
also connects with the following more “applied” chapters by proposing
a laboratory experiment with diatomic molecules driven into chaos by
the application of a sequence of strong electric field pulses. In Chapters
6 — 10 the ideas of chaos and nonlinear systems developed in Chapters
1 — b5 are applied to actual atomic physics systems. Two different types of
systems are discussed: driven and time independent (autonomous). Rep-
resentatives of driven systems are discussed in Chapters 6 — 8. Chapter
6 presents the classical and quantum dynamics of surface state electrons.
Surface state electrons are an essentially one-dimensional system whose
physics is not encumbered with the presence of additional degrees of free-
dom. Moreover surface state electrons provide an excellent model for
microwave-driven hydrogen Rydberg atoms discussed in Chapter 7. The
importance of phase-space fractals for the properties of atomic decay is
discussed in Chapter 8. With Chapter 8 we conclude the discussion of
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6 1 Introduction

time dependent atomic systems. Representatives of not explicitly time
dependent atomic and molecular systems are discussed in Chapters 9 and
10. Chapter 9 is on chaotic scattering theory applied to molecular scat-
tering in external fields. It prepares for a discussion of the helium atom
(Chapter 10), which may be classified as an autonomous chaotic scatter-
ing system. The book concludes with Chapter 11, a discussion of status,
trends and developments of chaos in atomic physics.

1.1 Chaos: a physical example

The difference between regular and chaotic motion is best explained with
the help of a physical model. The model also illustrates one of the cen-
tral messages of chaos theory: the possibility of complex motion in the
simplest physical systems.

We assume Newtonian mechanics to be valid and consider a mass
point M bouncing in a two-dimensional square box of side length 1 (see
Fig. 1.2). The box shown in Fig. 1.2 is used to illustrate regular mo-
tion. Therefore, we call it “R”. Another box is shown in Fig. 1.3. It is
equipped with a hard stationary disk of radius r = 1/4 at its centre. It
serves to illustrate chaotic motion. Therefore, we call it “C”. We assume
that inside the boxes the mass point M travels on straight line trajecto-
ries subject only to specular reflection whenever it hits the walls of R or
C, or the central disk of box C. Since the motion of M is free between
bounces, the mass of M is irrelevant for the kinematics of M. Therefore,
M’s velocity can be normalized to 1.

The walls of the boxes are labelled a, b, ¢ and d as shown in Figs. 1.2
and 1.3. The mass point M is injected into the box at a launch point L
located at z = 0,y = 1/2. The launch velocity of M is 7 = (vs,vy) =
(cos(¢),sin{p)) where ¢ is the initial inclination of the trajectory of M

Fig. 1.2. Regular motion of a mass point M inside an empty square box labelled
R. A trajectory launched at L with ¢ = 0.69 returns to wall d after three
bounces.
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1.1 Chaos: a physical example 7

(see Figs. 1.2 and 1.3). In order for ¥ to point into the interior of the box,
the angle ¢ may range from —n/2 to 7/2. Due to symmetry, and without
loss of generality, ¢ may be restricted to the interval 0 < ¢ < 7/2.

At first sight the box systems may look dry and abstract. But adding
a simple modification immediately converts the boxes into models for
molecular reactions. We declare the wall d to be “sticky”. By this we
mean that whenever the mass point M hits the wall d it is “absorbed”.
This way its final position on the y axis, denoted by y® (y©, respectively),
can be determined as a function of the initial angle ¢. In analogy to
the theory of molecular reactions, the functions yf(y), y©(¢) are called
reaction functions.

First, we discuss the motion of M in box R. Following its depar-
ture from L, the mass point M ricochets around inside R. Returning
to Fig. 1.2, a sample trajectory launched at L with ¢ = 0.69 is shown.
The resulting motion is simple. The successive points of impact at the
walls can be computed using only elementary geometry. As a result, the
reaction function y®(p) can be calculated analytically. We obtain:

1
yBlp) = 1 - ‘1 - [5 + 2tan(g0)] mod 2‘. (1.1.1)
It is important to note that y®(yp) can be expressed analytically with
the help of elementary functions. This feature is characteristic for simple

systems that do not show chaos. The simplicity of the reaction function
(1.1.1) is reflected in the graph of y®(p), shown in Fig. 1.4(a).

0 a 1

Fig. 1.3. Irregular motion in box C. This box is derived from box R by adding a
totally reflecting disk at the centre of R. (a) A complicated but exiting trajectory
is produced for the launch angle ¢ = 0.69. (b) Dynamically trapped trajectory
for a launch angle close to ¢ =~ 0.692.
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Fig. 1.4. Reaction function y®(y) for box R. (a) Full range of angles 0 < ¢ <
7w /2. (b) Magnification of a detail of (a) in the interval 1.4 < ¢ < 1.52.

The graph of y%(y) displays a regular, saw-tooth like behaviour. The
cusps of the reaction function y% () occur at

2n—1

4

Yp = arctan ( ) , m=12 ... (1.1.2)
The only “complication” in y®(¢) is an accumulation point of “zig-zags”
at ¢ = m/2. But this accumulation is perfectly regular. The positions
of the accumulating cusps are predicted accurately by (1.1.2). In or-
der to show that indeed nothing interesting is hidden in the “blur” in
Fig. 1.4(a) close to ¢ = 7/2, Fig. 1.4(b) shows a magnification of a detail
of Fig. 1.4(a) ranging from ¢ = 1.4 to ¢ = 1.52. It is important to note
that any details which might be hidden in Fig. 1.4(a) close to ¢ = 7/2
can be resolved in any interval [a,b], a < b < m/2. No matter how closely
we look, i.e. no matter how large the magnification factor, nothing inter-
esting will ever be revealed about the functional behaviour of y%(¢). On
the analytical level this is already clear from the simple analytical form
(1.1.1) of y®(y) and the orderly position of its cusps according to (1.1.2).
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Fig. 1.5. Reaction function y©(¢p) for box C. (a) Full range of angles 0 < ¢ <
/2. (b) Magnification of a detail of (a) in the range 0.44 < ¢ < 0.60,

This situation changes drastically in the case of box C. The new re-
action function y©(y) is shown in Fig. 1.5(a). This time the reaction
function looks very complicated. The question is whether this compli-
catedness is only in degree or in quality. The answer is that the simple
addition of a scattering disk at the centre of box R results in a pro-
found qualitative change in the motion of M, so drastic, indeed, that the
resulting motion can only be described as “chaotic”.

There are various indicators for this qualitatively new type of mo-
tion. First of all, an analytical formula for y%(¢) is not known. By
“analytical formula” we mean that y©(p) cannot be written down in
finitely many steps with the help of the known special functions of math-
ematical physics. Furthermore, the unresolved structures apparent in
the reaction function displayed in Fig. 1.5(a) cannot be resolved in prin-
ciple, no matter how large the magnification factor. This is illustrated
in Fig. 1.5(b), which shows a magnification of a detail of Fig. 1.5(a) in
the range 0.44 < ¢ < 0.60. Indeed, instead of appearing simpler, as
was the case with magnifications of unresolved structures in y®(¢p), the
magnification shown in Fig. 1.5(b) appears to be even more complicated.
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Further magnifications of Fig. 1.5(b) reveal generation after generation
of additional structure never resolving the “spiky” behaviour of y% ().
Obviously there is a fundamental difference between y®(¢p) and y<(¢).
While Fig. 1.4(b) shows that the “blurry” structures in Fig. 1.4(a) can in
fact be resolved, this is not true for the reaction function y°(¢). The re-
action function y© () shows regions which exhibit structure on all length
scales. Moreover, while y(¢) shows a mild type of “singularity”, called
“cusps” above, the reaction function y© () exhibits genuine singularities
in ¢. The origin of these singularities is the phenomenon of dynamical
trapping. Fig. 1.3(b) illustrates this phenomenon. There exist certain
angles ¢, in the interval 0 < ¢ < 7/2 of launch angles for which the re-
sulting trajectory of the mass point M never returns to wall d of box C.
As shown in Fig. 1.3(b) the particle bounces forever between the walls
a, b, ¢ and the central disk without ever reaching wall d. The impor-
tant point about dynamical trapping is the fact that the particle is not
hindered by any obvious means, such as physical obstacles, or energy
considerations, from exiting the “reaction region”. It is free to leave at
any time, but fails to do so, because of the details of its motion.

If a launch angle ¢, leads to dynamical trapping the value of the reac-
tion function y(p;) is not defined. We collect all these special angles ¢,
into a set S of scattering singularities. A way of visualizing the set S is
to plot the number of bounces of M against the walls versus the launch
angle . We call the number of bounces the lifetime [ of a trajectory
with launch angle ¢. Fig. 1.6 shows the lifetime [(¢) as a function of ¢.
Smooth regions alternate with regions that contain “spikes” representing
scattering singularities characterized by ! = oco. The singularities in {
correspond to the exceptional angles ¢, collected in the set S. Since the
singularities in [ occur precisely at the places where y© is not defined, we
conclude that in analogy to Fig. 1.5 the spiky regions of Fig. 1.6 are not
resolvable. This implies that the set S of scattering singularities has a
very complicated structure. Moreover, since no degree of magnification
yields an end to the hierarchy of scattering singularities, we conclude that
S must have infinitely many members ¢, i.e. S is an infinite set. Even
more astonishing: it turns out that the elements of S are not countable.
This means that no scheme exists according to which the singularities
in ¥©(¢) can be listed one by one. Therefore, paradoxically, the singu-
larities of y©(¢) (I(¢), respectively) are just as numerous as the initial
angles ¢ in the interval 0 < ¢ < m/2. This fact is truly counterintuitive.
Its precise meaning is explained in Chapter 2. We will return to a more
detailed study of scattering singularities in Chapter 9, where we study
a molecular physics example of chaotic scattering. In that chapter we

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521017904
http://www.cambridge.org
http://www.cambridge.org

