Index

Note: Entries printed in boldface type and followed by a lower-case f or t refer to figures or tables.

acquire process, 30, 31f
administration: and PDM systems, 186; and program office, 86; and support functions, 73; see also business management
American Production and Inventory Control Society (APICS), 301, 306, 310
balance of power, and resistance to change, 219, 220f
behavior, of IPT members, 234–7; see also organizational culture and management
benchmark testing, 40
benefit streams, and program/project management, 83
bill of material (BOM): and PDM systems, 183, 302, 303–4, 305–6, 309; and project charter, 197f
body of knowledge: definition of, 3; and holistic approach, 4, 9; and integrated product development, 4–6; organizational change and political management, 7; and process management, 7; and PDM, 7–8; and project/product management, 6–7; and systems engineering, 8; see also knowledge
brainstorming, and concurrent engineering, 246–7
brokers, and resistance to change, 219–20
budgets: and initiative program, 200; IPTs and responsibility for, 130–1; and program/project management, 82; see also costs and cost management
business case, and program/project management, 82
business initiatives, and program/project management, 83–5
business management: and support functions, 73; see also administration; management systems and tools
business process reengineering (BPR) initiatives, 200, 201f
case study, of IPT implementation: and communication, 244–5; and decision making, 242–3; and leadership, 238–40; roles and responsibilities of members, 243–4; and setup, 241–2; skills and training of, 245–8
change and change control: definition of, 167; and hierarchical force, 225f; and IPTs, 230–4; organizational culture and resistance to, 208–23; and program execution, 143; and program/project management, 83; risk management and technological, 124–5; see also engineering change
Change Masters, The (Kanter, 1985), 7
check-in and check-out functions, of PDM systems, 180, 181f
chief engineering officer (CEO), and IPT, 224
collaborative engineering, and PDM systems, 177
collaborative engineering, and PDM systems, 177
colocation: and IPD process, 6; and IPTs, 229; and program initiation, 137–8
commodities, possession of and resistance to change, 218–19
communication: and high-quality product definition, 11; and holistic approach, 19–20; and IPTs, 72, 244–5; and PDM systems, 184; and program initiation, 138, 194; and program/project management, 82, 84
Competitive Strategy (Porter), 21
core concurrency matrix, 75
concurrent engineering (CE): and business strategy, 21; and implementation, 238; and integrated product development, 5; and new methods, 246–7; and organizational culture, 229; and PDM systems, 177, 187; and program structuring, 101; and team-based approach to engineering organization, 223; and training of IPTs, 131; see also holistic approach configuration management (CM), 304–5 conflict, and IPTs, 235 consensus decision making, 132, 234, 242–3 consultants: and initiative program, 196–7; and organizational change, 213–15 contracts: contract-unique requirements and integrated master plan, 45, 47; and performance measures, 82; and program initiation, 136–7; and program/project management, 86 control: and IPD approach, 12; and program/project management, 78, 82 core members, of IPTs, 134 core process: and customer deliverables, 32–3; and holistic approach, 22f costs and cost management: and design, 126, 127f, 136; and PDM systems, 188; and product/process development in serial approach, 15, 16f; and program initiation, 126, 130–1, 136; and program/project management, 83, 86; and workplans, 109; see also budgets; estimating critical design review (CDR), 168–9 customer: focus on as critical factor in holistic approach, 18; and program execution, 144; and program/project management, 80–1; and progress reporting, 142; and project manager, 64–5, 66; and risk management, 124; roles and responsibilities of, 51, 56–7; and training of IPTs, 131 customer deliverables: and engineering change, 171, 172–3f; and engineering process management, 30–3, 34f, 35; and phase objectives, 258–65f; and phases in definition process, 266–71f; and program structuring, 101, 102–5; and quality assurance, 156, 159; roles and responsibilities of customer, 56; and understanding of individual work products, 94–5 customer tailoring, and integrated master plan, 45, 47 data transport and translation, and PDM systems, 185 data vaults, and PDM systems, 179–81 decision making: and IPD philosophy, 13; and IPTs, 132, 234, 235, 242–3 Define process: and acquire process, 30, 31f; and maturity gates, 33; phases of, 24, 25, 26f; and process maturity, 38; program structuring and planning, 98 deliverables: see customer deliverables deployment plan, and initiative program, 200, 201f design: and critical factors in holistic approach, 18; and design tip, 90–3; and PDM systems, 182, 187; see also design freezes design-to-cost model, 126, 127f, 136 design freezes, and engineering change, 168–9 design for manufacturing and assembly (DFMA) manual, 44–5 detail definition phase, 168, 169 documentation: and quality product definition, 11; and repositories, 133; see also log; product data management drafting manuals, 93–4 dysfunctional social systems, and resistance to change, 221 e-business, and integrated enterprise framework, 20–1; see also internet economic system, and resistance to change, 215–17, 218, 219f, 221 education, and initiative program, 199; see also training effectivity dates, and PDM/ERP integration, 308–9 emotional resistance, to change, 220–1 empowerment, of IPTs, 16–17, 19 end users, of PDM systems, 186 engineering: see concurrent engineering; engineering change; engineering process management; reengineering; systems engineering engineering change: definition of, 167; and design freezes, 168–9; and PDM systems, 188, 304; process of, 167–8; and program management, 169–76; see also change and change control; engineering change request (ECR) engineering change request (ECR): and customer deliverables, 127f, 172f; evaluation of, 175–6; and program management, 169–71 engineering manuals: and drafting manuals, 93–4; and specific tasks, 88; task guidelines and design tips, 90–3
Index

engineering module, in enterprise resource planning, 304–6
engineering policy and procedure (EPP), and numbering systems, 48
engineering process framework, 24–7
engineering process management: and customer deliverables, 30–3; and engineering process framework, 24–7; milestones and maturity gates, 33–7; and process maturity, 37–41; and work breakdown structure, 27–30; see also process management
engineering tasks: see tasks
enterprise resource planning (ERP), and product data management, 301–10; see also resources
evaluators, and program review, 155–8
event-driven scheduling, 18
execute business process, 22f, 23
five-level maturation concept, 38, 39f
functional director: and program review board, 165; roles and responsibilities of, 62–3, 64f
functional manager, roles and responsibilities of, 66–7
groupthink, and IPTs, 225
Guide to the Project Management Body of Knowledge (Project Management Institute), 6
high-quality product, 11
holistic approach: and bodies of knowledge, 4, 9; and integrated enterprise framework, 20–3; and integrated product development, 10–20; motivation for, 9–10; and quality assurance, 153; and training of IPTs, 131–2
image viewing utilities, and PDM systems, 185–6
implementation: of change in organizational culture, 211–12; and IPT leadership, 238–40; of PDM systems, 188; roles and responsibilities of program participants, 54–5t; see also initiative program; program initiation
improvement indicators, 151, 152, 153 inefficiencies, and process maturity, 41 infrastructure: and PDM systems, 186–8; and program/project management, 82, 86 initiative program: and budgeting, 200; and consultants, 196–7; and deployment plan, 200, 201f; divisional and corporate structures, 205–6; and elements for effective management, 193–5; potential pitfalls of, 206–7; presentation of plan for, 205; and process of organizing, 191–2; and program charter, 196, 197f; and program planning, 197–8; roles and responsibilities of team members, 201–2, 204–5; and steering committee, 192–3; and team member assignment, 195–6; see also implementation; program initiation
integrated enterprise framework, and holistic approach, 20–3
integrated master plan (IMP): and engineering tasks, 45–7; and life cycle planning, 18; and numbering systems, 43–4; see also planning
integrated master schedule (IMS): and engineering tasks, 47–8; and event-driven scheduling, 18; and numbering systems, 44; and program initiation, 135–6; see also scheduling
integrated product development (IPD): and bodies of knowledge, 4–6; and holistic approach, 10–23; and maturity self-evaluation tools, 251–7; phase objectives and customer deliverables, 258–65t; and program initiation, 128–9, 131; see also product and process development
integrated product teams (IPTs): and autonomous team, 227–8; and colocation, 229; and communication, 244–5; and decision making, 132, 234, 235, 242–3; differences in orientation of, 224; and empowerment, 16–17; and full-time, full-duration team, 228; and functional management, 63; goals of, 227; and inequalities among members, 224–5; and integrated product development approach, 5–6, 13; leaders of and change management skills, 230–4; leadership of and implementation, 238–40; members of and performance of specific tasks, 87–97; and members as specialists, 230; obstacles to effectiveness of, 224; and organizational politics, 226–7; and PDM systems, 182; and program initiation, 126, 128–31, 133–9; and program review board, 165; and project manager, 64, 65; and quality advisor, 166; and risk
integrated product teams (IPTs) (cont.)
management, 125; roles and responsibilities of leaders, 68–71; roles and responsibilities of members, 71–2, 73f, 87, 243–4; setup of, 241–2; size of, 229; skills of, 245–8; and synergy, 17; and team behavior, 234–7; and team myth, 225; and team rewards, 230; and trade studies, 127; and training, 75, 131–3, 245–8; and work-related teams, 16, 17f
integration team (IT): and communication, 245; and program initiation, 134–5
International Council on Systems Engineering (INCOSE), 8
International PDM Users Group, 307, 308
internet, and IPT operations, 138; see also e-business
interpersonal skills, of IPT members, 246
IPD: see integrated product development
IPTs: see integrated product teams
issues log, 142–3
joint ownership approach, and customer, 56
key deliverable, 31, 32
kick-off meeting, and program initiation, 129
knowledge, and concept of value, 31; see also body of knowledge
labor unions, and initiative programs, 207
leaders and leadership: and initiative programs, 194; and IPTs, 20, 68–71, 230–4, 238–40; and program directors, 81; and program/project management, 84–5
liaisons, and IPT communication, 245
life cycle, of product: and critical factors in holistic approach, 18, 19; and IPTs, 6; and phases, 25; and quality evaluations, 160, 161f
living arrangements, and program environment, 133
log, and engineering change management, 174–5; see also documentation; issues log
management systems and tools: and holistic approach, 19; and program coordinator, 68; and program/project management, 80–1, 84; see also business management manuals: see engineering manuals
Marketing Requirements and Objectives (MR&O), 100
markup, of images in PDM systems, 185–6
Maslow’s hierarchy of needs, 217, 218f
materials requirement planning (MRP), and PDM systems, 301, 309
maturity gates: and engineering process management, 33–7; and program initiation, 128
maturity indicators, 251–2
maturity self-evaluation tools, and integrated product development, 251–7
meetings: and communication of IPTs, 138; and program execution, 143–4
mid-level plans, 108
milestones: and engineering process management, 33–7; and example of process, 272–3t; and program/project management, 82, 86
multidisciplinary teamwork, and holistic approach, 19
multivoting, and decision making, 243
notification utilities, and PDM systems, 184
numbering systems, and single-number tracking system, 43
organization culture and organizational management: adaptability of and success of program/project management, 81–2; and bodies of knowledge, 7; and concurrent engineering, 229; and initiative programs, 205–6; and resistance to change, 208–23; and team-based approach, 223–30; and work breakdown structure, 130f; see also politics, organizational partners: internet and collaboration by, 138; and program/project management, 80–1; and program manager, 65, 66; roles and responsibilities of, 57–9; see also customer; sponsors
PDM: see product data management
performance efficiency improvement (PI), 239
performance measures: and contracts, 82; and program execution, 141; and quality assurance, 150, 151, 152
personnel: see roles and responsibilities; staffing
phase/maturity alignment matrix, 35, 36f, 37f
phases: and customer deliverables, 258–71t; of Define process, 24, 25, 26f; objectives of, 258–65t; and work breakdown structure, 27
planning: checklist for, 283–4; and customer, 56; and general program plan, 198–200; and holistic approach, 11; and initiative program, 197–8; and integrated
master plan, 105–18; objectives of, 198; and planning window, 107–8; principal activities of, 98–100, 109, 110f; program execution and replanning, 143; and program/project management, 77, 82; and risk assessment, 66; scope and environment of program, 100; selecting and tailoring of subphases and deliverables, 102–5; task descriptions, 274–81f; see also enterprise resource planning; integrated master plan

politics, organizational: and bodies of knowledge, 7; and focus on future, 211–12; and IPTs, 226–7; management of, 209–11; and reasons for resistance to change, 215–23; tactics of, 212–15

preliminary definition phase, of engineering change, 168

preliminary design review (PDR), 168–9

process defects, 148

process definition, 11

process framework: and integrated enterprise framework, 21, 22f, 23; and IPT members, 88–9; and planning. 118f

process management: and bodies of knowledge, 7; and PDM systems, 181–2; see also engineering process management

product data management (PDM): administration of, 186; benefits of, 186–8; and bodies of knowledge, 7–8; and classification or retrieval of data, 183–4; and communication or notification services, 184; and data transport or translation, 185; data vault and document management, 179–81; and enterprise resource planning, 301–10; functions of, 176–9; and image viewing, 185–6; and product structure/configuration management, 182–3; and program/project management, 184; and project repository, 97; users of, 186; workflow and process management, 181–2

program charter, and initiative program, 196, 197f

program coordinator, roles and responsibilities of, 67–8

program director: and effective leadership, 81; and performance efficiency improvement, 239; and program review board, 165; and progress reporting, 142; roles and responsibilities of, 59–62

program execution: and monitoring, 140–1; and performance measurement, 141; and program/project management, 77–8; and progress reporting, 141–3; and quality assurance, 154

program initiation: definition of, 126; and establishment of goals, 126–7; and IPTs, 128–39; and product definition, 127–8; and program environment, 133; and program/project management, 77; see also implementation; initiative program

program manager, and initiative program, 194; see also project manager

program offices, 79–80, 86

program plan variances, 148

program/project management: and bodies of knowledge, 6–7; and business initiative, 83–5; and colocation of IPTs, 229; critical success factors for, 80–2; definition of, 76; and engineering change, 169–76; framework for, 85; and holistic approach, 11–12; and PDM systems, 184; and planning, 117–18; processes and elements of 76–9, 82–3; and program office, 79–80, 86

program review board (PRB): and program review progress, 163–6; and quality evaluators, 157–8

program reviews: and planning, 116; process of, 153–66; and program/process management, 78; and quality assurance factors, 145–53; see also quality and quality assurance

program size, and risk assessment/management, 112, 123

program start-up, and roles or responsibilities of participants, 53t

program structuring: benefits of, 100; checklist for, 282–3; definition of, 98; process of, 101–2; and progress reporting, 141–2; and quality assurance, 153–4; and risk assessment and management, 105, 122, 124, 292–300t; selecting and tailoring of subphases and deliverables, 102–5

progress meetings, 144

project estimating: see estimating

project execution, and IPD approach, 12
project manager, roles and responsibilities of, 64–6; see also project management
Project Management Institute, 6
project/program management: see program/project management
project repository, 97
proposals: requests for and flexibility, 18; and roles or responsibilities of participants, 52t
quality advisor, 165
quality control, and quality assurance, 146–8
quality function deployment (QFD), 139, 140f
quality and quality assurance: definition of, 146; and evaluators, 155–8; factors in and elements of, 145–8; and holistic approach, 153; and integrated master plan, 116; and measurement, 148–53; and PDM systems, 188; as preventive measure, 165; and program/project management, 83; and program structuring, 153–4; and quality advisor, 165–6; see also program reviews questionnaire, for risk assessment, 122, 286–91t; see also surveys
reengineering: organizational politics and resistance to, 211; and process maturity, 40
reference copies, and PDM system, 180
reference numbers, and engineering policy and procedure, 48
related objective and deliverables maps (ROADMAPS), 88, 89, 90f
replanning, and program execution, 143
reports and reporting: and program execution, 141–3; and support functions, 73–4
repositories: see documentation; project repository
Requests for Proposals (RFPs), 18; see also proposals
resources: and initiative program, 203f; and program planning, 115; and resource profiles, 78–9, 129–30; see also enterprise resource planning
retrieval, of data by PDM systems, 183–4
revision/version control support, and PDM systems, 182
risk and risk management: benefits of, 119–20; definition of, 119; and holistic approach, 19; and planning, 68, 111–12f, 114–15; process of, 120, 121f; and program/project management, 83; and program structuring, 105, 292–300t; and questionnaire, 122, 286–91t; strategies for management of, 122–5; and systems engineering, 8; timing of, 120
ROADMAPS: see related objective and deliverables maps
roles and responsibilities: of customer, 51, 56–7; of functional director, 62–3, 64f; of functional manager, 66–7; and initiative program, 201–2, 204–5; of IPT leaders, 68–71, 232f; of IPT members, 71–2, 73f, 87, 243–4; of partner, 57–9; of program coordinator, 67–8; of program director, 59–62; and program implementation, 54–5t; and program start-up, 53t; of project manager, 64–6; and proposal phase, 52t; of sponsor, 59; and support functions, 73–4; see also staffing
sample deliverables, 95–6
scheduling: holistic approach and event-driven, 18; and planning, 115; and program initiation, 131, 198–9, 207; and support functions, 74; and workplans, 109; see also integrated master schedule
second shifts, and program initiation, 137–8
serial approach: compared to IPD, 14; and product and process development, 14–15
shadow system, and resistance to change, 215–16, 218, 219f, 220, 221
single-number tracking system, 42–5
Six Sigma Quality, 41
skills types: and deployment team, 203f; IPT leaders and change management, 230–4; IPTs and training, 245–8; and roles and responsibilities in engineering programs, 74–5; see also staffing
social factors, and organizational culture, 212–13
Society of Manufacturing Engineers (SME), 310
sociological approach, to implementation of change, 213–15
solutions demonstration laboratory (SDL), 125
specification tree, 43–4
sponsors, roles and responsibilities of, 59; see also partners
staffing: and program initiation, 130, 133–5; and program/project management, 83; and quality assurance, 148–9; see also roles and responsibilities; skill types
stakeholder maps, for IPTs, 235, 236f
Statements of Work (SOWs), 18, 43–4
steering committee, and initiative program, 192–3
subphases: and process framework, 89; and product maturity, 35; and program structuring, 101, 102–3; and work breakdown structure, 28; and workplan, 107, 108
subproject leads, and initiative program, 201
subteams, and concurrent engineering, 246–7
suppliers, and program execution, 144
support functions: and members of IPTs, 134; roles and responsibilities of, 73–4
surveys: and maturity self-evaluation tools, 252–7; and PDM/ERP integration, 308–9; see also questionnaires
system engineering integration team (SEIT), 135
systems engineering, and bodies of knowledge, 8
task groups: and work breakdown structure, 28; and workflow diagrams, 111–12, 113
tasks, engineering: and guidelines, 90–3; initiative program and scheduling of, 198–9; and integrated master plan, 45–7; and integrated master schedule, 47–8; IPT members and performance of specific, 87–97; and planning process, 274–81; and single-number tracking system, 42–5; and subphases of work breakdown structure, 28; and workplan template, 47f; see also task groups
team-based approach, to engineering organization, 223–30
team-building, and IPTs, 246
technical team managers, and initiative program, 202, 204
technology: and PDM systems, 188; and risk assessment/management, 122, 124–5
templates: see workplans and workplan templates
terminology, project teams and use of common, 12
testing: and benchmarks, 40; and planning, 117; see also performance measures;
program reviews; quality and quality assurance
thumb voting, and decision making, 243
time span, of initiative program, 207
top-level process model, 22f
trade studies, and IPTs, 127
training: and benefits of holistic approach, 13; and initiative program, 199–200; and IPTs, 75, 131–3, 245–8; and partners, 58; and planning, 117; and program coordinator, 68; and risk management, 125
values, and organizational politics, 222
virtual product development (VPD), 125
walkthroughs: and planning, 116–17; and program review process, 159–60
WBS: see work breakdown structure
“where-used” searches, and PDM system, 182
work breakdown structure (WBS): and engineering process management, 27–30; and IPT setup, 241; and numbering systems, 43–4; and organizational structure, 130f; program initiation and integrated product development, 128; and program/project management, 82; and project planning, 11
workflow: and PDM systems, 8, 181–2; and ROADMAPs, 89; and task groups, 111–12, 113
workplan and workplan template: and engineering tasks, 47f; see also task groups
work product, and customer deliverables, 31
workspace, and program environment, 133
worksteps, and work breakdown structure, 28
worldview, individual, 214
wrap-up, and program/project management, 78
zero-sum game, 219