This graduate/research-level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher-dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantization of strings, gravity and topological field theory.

With chapters on random walks, random surfaces, two- and higher-dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, although the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included.

This book will be of interest to graduate students and researchers in theoretical and statistical physics, and in mathematics.
CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

J. Ambjorn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach
A. M. Amile Relative Fluids and Magneto-Fluids
J. A. de Azcárraga and J. M. Izquierdo Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics
J. Bernstein Kinetic Theory in the Early Universe
G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems
N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space
D. M. Brink Semiclassical Methods in Nucleus-Nucleus Scattering
J. C. Collins Renormalization
P. D. B. Collins An Introduction to Regge Theory and High Energy Physics
M. Creutz Quarks, Gluons and Lattices
F. de Felice and C. J. S. Clarke Relativity on Curved Manifolds
B. De Witt Supermanifolds, 2nd edition
P. G. O. Freund Introduction to Supersymmetry
F. G. Friedlander The Wave Equation on a Curved Space-Time
J. Fuchs Affine Lie Algebras and Quantum Groups
J. A. H. Futterman, F. A. Handler and R. A. Matzner Scattering from Black Holes
M. Göckeler and T. Schücker Differential Geometry, Gauge Theories and Gravity
C. Gómez, M. Ruiz Altaba and G. Sierra Quantum Groups in Two-Dimensional Physics
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, volume 1: INTRODUCTION
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, volume 2: LOOP AMPLITUDES, ANOMALIES AND PHENOMENOLOGY
S. W. Hawking and G. F. R. Ellis The Large-Scale Structure of Space-Time
F. Iachello and A. Arima The Interacting Boson Model
F. Iachello and P. van Isacker The Interacting Boson-Fermion Model
C. Itzykson and J.-M. Drouffe Statistical Field Theory, volume 1: FROM BROWNIAN MOTION TO RENORMALIZATION AND LATTICE GAUGE THEORY
C. Itzykson and J.-M. Drouffe Statistical Field Theory, volume 2: STRONG COUPLING, MONTE CARLO METHODS, CONFORMAL FIELD THEORY, AND RANDOM SYSTEMS
J. I. Kapusta Finite-Temperature Field Theory
V. E. Korepin, A. G. Izergin and N. M. Bogoliubov The Quantum Inverse Scattering Method and Correlation Functions
D. Kramer, H. Stephani, M. A. H. MacCallum and E. Herlt Exact Solutions of Einstein’s Field Equations
N. H. March Liquid Metals: Concepts and Theory
I. M. Montvay and G. Münster Quantum Fields on a Lattice
L. O’Raifeartaigh Group Structure of Gauge Theories
A. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization
R. Penrose and W. Rindler Spinors and Space-time, volume 1: TWO-SPINOR CALCULUS AND RELATIVISTIC FIELDS
R. Penrose and W. Rindler Spinors and Space-time, volume 2: SPINOR AND TWISTOR METHODS IN SPACETIME GEOMETRY
S. Pokorski Gauge Field Theories
V. N. Popov Functional Integrals and Collective Excitations
R. Rivers Path Integral Methods in Quantum Field Theory
R. G. Roberts The Structure of the Proton
J. M. Stewart Advanced General Relativity
A. Vilenskii and E. P. S. Shellard Cosmic Strings and other Topological Defects
R. S. Ward, R. O. Wells Jr Twistor Geometry and Field Theories

1 Issued as paperback
A generic universe in two-dimensional gravity, generated by the computer algorithms described in Chapter 5, and embedded in three-dimensional space for illustrative purposes.
Quantum Geometry
A statistical field theory approach

JAN AMBJØRN
BERGFINNUR DURHUUS
University of Copenhagen

THORDUR JONSSON
University of Iceland
Contents

Preface xi

Notation xiii

1 Introduction 1

2 Random walks 11
 2.1 Parametrized random walks 12
 2.1.1 The Wiener measure 12
 2.1.2 Universality of the Wiener measure 15
 2.2 Geometric random walks 19
 2.2.1 Embedded random walks 19
 2.2.2 Riemannian random walks 24
 2.3 Rigid random walks 32
 2.3.1 Curvature-dependent action 32
 2.3.2 The two-point function 34
 2.3.3 The scaling limits 36
 2.3.4 The tangent–tangent correlation function 41
 2.4 Fermionic random walks 46
 2.5 Branched polymers 53
 2.5.1 Extrinsic properties 53
 2.5.2 Intrinsic properties 61
 2.5.3 Generalizations 63
 2.6 Notes 64

3 Random surfaces 66
 3.1 Introduction 66
 3.2 The dynamically triangulated random surface model 68
 3.3 Triangulations and Regge calculus 73
 3.4 Basic properties of the loop functions 78
 3.4.1 Convergence of the loop functions 79
 3.4.2 The susceptibility exponent γ 85
Contents

3.4.3 Branched polymer surfaces 90
3.4.4 Mass and string tension 95
3.4.5 The Hausdorff dimension 100
3.4.6 Scaling and the continuum limit in the DTRS-model 102
3.5 Random surfaces on a lattice 104
3.5.1 Definition of the lattice surface model 105
3.5.2 Mass, susceptibility and string tension 110
3.5.3 Critical behaviour and continuum limit 115
3.6 Rigid surfaces 123
3.6.1 Motivation 123
3.6.2 Curvature-dependent action 125
3.6.3 The crumpling transition 130
3.7 Crystalline surfaces 135
3.7.1 The kinematics of crumpling 138
3.7.2 A lower bound on the size of crystalline surfaces 143
3.8 Notes 145

4 Two-dimensional gravity 149
4.1 The continuum formalism 149
4.2 The combinatorial solution 154
4.2.1 Regularization 155
4.2.2 Counting planar graphs 160
4.2.3 Generalization 165
4.2.4 An easy example 167
4.2.5 The general model 171
4.3 Counting higher-genus surfaces 173
4.3.1 The loop equation for genus \(h > 0 \) 173
4.3.2 Solution of the loop equation for \(h > 0 \) 175
4.3.3 The generating function \(\mathcal{Z}_h \) for closed triangulations 178
4.3.4 The number of triangulations of genus \(h \) 181
4.4 The continuum limit 182
4.4.1 Renormalization of the cosmological constant 182
4.4.2 Continuum results for genus zero 183
4.4.3 Continuum results for higher-genus surfaces 186
4.5 Multi-critical models 189
4.5.1 General considerations 189
4.5.2 The dimer model 191
4.5.3 Connection with conformal field theory 195
4.6 The continuum loop equation 199
4.7 The two-point function 212
4.7.1 General considerations 212
4.7.2 A differential equation for the geodesic two-loop function 215
4.7.3 Solution of the differential equation 220
4.7.4 A transfer matrix approach 223
4.8 Matrix models 226
4.8.1 Counting triangulations using matrix models 226
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.2 The loop equations</td>
<td>230</td>
</tr>
<tr>
<td>4.8.3 Non-perturbative quantum gravity?</td>
<td>233</td>
</tr>
<tr>
<td>4.8.4 The Kontsevich model</td>
<td>234</td>
</tr>
<tr>
<td>4.9 More on matter and gravity</td>
<td>237</td>
</tr>
<tr>
<td>4.9.1 Coupling matter fields to gravity</td>
<td>237</td>
</tr>
<tr>
<td>4.9.2 The Ising model</td>
<td>238</td>
</tr>
<tr>
<td>4.9.3 Multiple-spin systems</td>
<td>241</td>
</tr>
<tr>
<td>4.10 Notes</td>
<td>247</td>
</tr>
<tr>
<td>5 Monte Carlo simulations of random geometry</td>
<td>251</td>
</tr>
<tr>
<td>5.1 Basic principles</td>
<td>251</td>
</tr>
<tr>
<td>5.2 Updating geometry</td>
<td>254</td>
</tr>
<tr>
<td>5.3 Finite-size scaling</td>
<td>260</td>
</tr>
<tr>
<td>5.4 Two-dimensional geometry</td>
<td>263</td>
</tr>
<tr>
<td>5.5 Notes</td>
<td>270</td>
</tr>
<tr>
<td>6 Gravity in higher dimensions</td>
<td>271</td>
</tr>
<tr>
<td>6.1 Basic problems in quantum gravity</td>
<td>271</td>
</tr>
<tr>
<td>6.2 Simplicial quantum gravity in dimensions $d > 2$</td>
<td>275</td>
</tr>
<tr>
<td>6.2.1 Simplicial complexes and triangulations</td>
<td>275</td>
</tr>
<tr>
<td>6.2.2 The metric structure</td>
<td>278</td>
</tr>
<tr>
<td>6.2.3 Generalized matrix models</td>
<td>282</td>
</tr>
<tr>
<td>6.3 Algorithmic recognizability and numerical methods</td>
<td>284</td>
</tr>
<tr>
<td>6.4 Numerical results</td>
<td>290</td>
</tr>
<tr>
<td>6.5 Notes</td>
<td>295</td>
</tr>
<tr>
<td>7 Topological quantum field theories</td>
<td>297</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>297</td>
</tr>
<tr>
<td>7.2 Generalities</td>
<td>298</td>
</tr>
<tr>
<td>7.2.1 The axioms</td>
<td>298</td>
</tr>
<tr>
<td>7.2.2 Some properties of TQFTs</td>
<td>301</td>
</tr>
<tr>
<td>7.3 Two-dimensional TQFT</td>
<td>303</td>
</tr>
<tr>
<td>7.3.1 TQFT on triangulations</td>
<td>303</td>
</tr>
<tr>
<td>7.3.2 The unitary case</td>
<td>307</td>
</tr>
<tr>
<td>7.4 Three-dimensional unitary TQFT</td>
<td>310</td>
</tr>
<tr>
<td>7.4.1 TQFT and three-dimensional gravity</td>
<td>311</td>
</tr>
<tr>
<td>7.4.2 The discrete framework</td>
<td>317</td>
</tr>
<tr>
<td>7.4.3 Construction in terms of 6j-symbols</td>
<td>323</td>
</tr>
<tr>
<td>7.5 Notes</td>
<td>337</td>
</tr>
</tbody>
</table>

References

Index

References

Index

© Cambridge University Press
www.cambridge.org
Preface

The main topic of this book is the work that has been carried out during the last 15 years under the general heading of random surfaces. The original motivation for the study of random surfaces came from lattice gauge theory, where one can represent various quantities of interest as weighted sums over surfaces embedded in a hypercubic lattice. A few years later, with the resurrection of string theory, random surfaces were used as regularization of that theory and, most recently, random surface models have been applied to two-dimensional quantum gravity. There is also an impressive body of work on random surfaces that has been carried out by membrane physicists, as well as by condensed matter physicists, so one often finds mathematically identical problems being studied in different branches of physics. Random surfaces are therefore not a physical theory but, rather, a theoretical tool and a methodology that can be applied to various physical problems in the same way as random walks find applications in many branches of science. The formalism that has been developed to deal with random surfaces carries over to the study of higher-dimensional manifolds, which are important for quantizing gravity in higher dimensions.

We address this book primarily to advanced graduate students in theoretical physics but we hope that more experienced researchers in the field, as well as mathematicians, may find it useful. As far as applications are concerned, our point of view is very much biased towards string theory and quantum gravity, where the geometric point of view is most important and powerful. This perhaps justifies the book’s title.

The purpose of writing this book was not to provide an encyclopaedic account of all the work on random geometry; rather, we have chosen to focus on mathematically precise results that have wide applications, as well as on key results from numerical simulations which have played an important role in guiding the development of the theory. We do not
Preface

provide complete proofs of the statements in the text where their content is not illuminating or where they are long and tedious, but try to warn the reader when the discussion becomes conjectural.

At the end of most chapters are notes that are intended to guide the reader to the original literature, as well as review articles and extensions of the discussion in the main text. There is no doubt that we have left out many important papers and we apologize in advance for all those omissions.

Important parts of the work reported in this book have been carried out in collaboration with our friends and colleagues A. Beliakova, D. Boulatov, J. Burda, M. Carfora, L. Chekhov, J. Fröhlich, J. Greensite, H. P. Jakobsen, J. Jurkiewicz, V. A. Kazakov, C. F. Kristjansen, Y. M. Makeenko, A. Marzuoli, R. Nest, P. Orland, B. Petersson, G. Thorleifsson, S. Varsted, Y. Watabiki and J. Wheater. We are indebted to J. Jurkiewicz, C. F. Kristjansen and Y. M. Makeenko for reading parts of the first draft of the book and pointing out many things that could be improved. M. Lund and G. Xander gave very valuable assistance with the diagrams, the references and the index.

Jan Ambjørn
Bergfinnur Durhuus
Thordur Jonsson
Notation

The purpose of this note is to explain a few notational conventions that we have used throughout the text, some of which may not be completely standard.

If f is a function of a positive real variable x, then the equation

$$f(x) = O(x^n)$$

means that there is a constant $C > 0$ such that

$$f(x) \leq Cx^n$$

for all values of x or for x in an asymptotic region, i.e. for either large or small x, depending on the context.

If f is as above, then the equation

$$f(x) = o(x^n)$$

means that

$$\lim_{x \to 0} \frac{f(x)}{x^n} = 0.$$

We use $O(x, y)$ as shorthand notation for $O(x) + O(y)$, and similarly for $o(x, y)$.

Finally, let f and g be functions of a real or complex variable x. We employ the notation

$$f(x) \sim g(x)$$

to mean one of three things: which one we have in mind is either explained explicitly in the text or it is supposed to be clear from the context. The first meaning is that the functions f and g are asymptotic as x approaches some limiting value x_0, i.e.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = C,$$
where C is a non-zero constant. It should always be clear from the context what x_0 is. In particular, x_0 can be infinite. The second meaning is that
\[
\lim_{x \to x_0} \frac{\log f(x)}{\log g(x)} = C.
\]
This case arises in particular when we wish to say that two functions have the same exponential decay. The third meaning is that f and g have a singularity of the same kind at the limiting point x_0. For example, if f and g are real analytic for $x > x_0$ and the nth derivative of f, $f^{(n)}$, is the lowest derivative of f which does not have a finite limit as $x \downarrow x_0$, then $f(x) \sim g(x)$ means that the limit
\[
\lim_{x \to x_0} \frac{f^{(n)}(x)}{g^{(n)}(x)}
\]
exists and is non-zero.