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Introduction

0.1 Aims of the book

The primary aim of this book is to develop a theory of measurement that

incorporates the observer into the phenomenon under measurement. By this

theory, the observer becomes both a collector of data and an activator of the

phenomenon that gives rise to the data. These ideas have probably been best

stated by J. A. Wheeler (1990; 1994):

All things physical are information-theoretic in origin and this is a participatory

universe . . . Observer participancy gives rise to information; and information gives

rise to physics.

The measurement theory that will be presented is largely, in fact, a quantifica-

tion of these ideas. However, the reader might be surprised to find that the

‘‘information’’ that is used is not the usual Shannon or Boltzmann entropy

measures, but one that is relatively unknown to physicists, that of R. A. Fisher.

The measurement theory is simply a description of how Fisher information

flows from a physical source effect to a data space. It therefore applies to all

scenarios where quantitative data from repeatable experiments may be col-

lected. This describes measurement scenarios of physics but, also, of science in

general. The theory of measurement is found to define an analytical procedure

for deriving all laws of science. The approach is called EPI, for ‘‘extreme

physical information.’’

The secondary aim of the book is to show, by example, that most existing

laws of science fit within the EPI framework. That is, they can be derived by its

use. (Many can of course be derived by other approaches, but, apparently, no

other single approach can derive all of them.) In this way the EPI approach

unifies science under an umbrella of measurement and information. It also

leads to new insights into how the laws are interrelated and, more importantly,

to new laws and to heretofore unknown analytical expressions for physical
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constants, such as for the Weinberg angle and Cabibbo angle (Chapter 11) of

the weak nuclear interaction.

In this way, the usual ways and the means of science are reversed. The

various branches of physics are usually derived from the top down, i.e., from

some suitable action Lagrangian, which in turn predicts a class of measure-

ments. By comparison, EPI derives science by viewing it, in effect, from the

bottom up. It is based upon measurements first and foremost.

Measurements are usually regarded as merely random outputs from a

particular effect. The EPI approach logically reverses this, tracking from output

to input, from the data to the effect. It uses knowledge of the information flow

in the measurement process to derive the mathematical form of the physical

effect that gives the output measurements. The approach is subject to some

caveats.

John A. Wheeler, from a photograph taken c. 1970 at Princeton University. Sketch by
the author.
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Caveat 1: The usual aim of theory is to form mathematical models for physical

effects. This is our aim as well. Thus, the EPI approach is limited to deriving the

mathematical expression of physical effects. It does not form, in some way, the

physical effects themselves. The latter are presumed always to exist ‘‘out there’’ in

some fixed form.

Caveat 2: One does not get something from nothing, and EPI is no exception

to this rule. Certain things must be assumed about the unknown effect. One is

knowledge of a source. The other is knowledge of an appropriate invariance

principle. For example, in electromagnetic theory (Chapter 5), the source is the

charge-current density, and the invariance principle is the equation of continu-

ity of charge flow. Notice that these two pieces of information do not by

themselves imply electromagnetic theory. However, they do when used in

tandem with EPI.

In this way, an invariance principle plays an active role in deriving a physical

law. Note that this is the reverse of its passive role in orthodox approaches to

physics, which instead regard the invariance principle as a derived property

from a known law. (Noether’s theorem is often used for this purpose.) This is a

key distinction between the two approaches, and should be kept in mind during

the derivations.

How does one know what invariance principle to use in describing a given

scenario?

Caveat 3: Each application of EPI relies upon the user’s ingenuity. EPI is not a

rote procedure. It takes some imagination and resourcefulness to apply. How-

ever, experience indicates that every invariance principle that is used with EPI

yields a valid physical law. The approach is exhaustive in this respect.

During the same years that quantum mechanics was being developed by

Schrödinger (1926) and others, the field of classical measurement theory was

being developed by R. A. Fisher (1922) and co-workers (see Fisher Box, 1978,

for a personal view of his professional life). According to classical measure-

ment theory, the quality of any measurement(s) may be specified by a form of

information that has come to be called Fisher information. Since these

formative years, the two fields – quantum mechanics and classical measure-

ment theory – have enjoyed huge success in their respective domains of

application. Until recent times it had been presumed that the two fields are

distinct and independent.

However, the two fields actually have strong overlap. The thesis of this

book is that all physical law, from the Dirac equation to the Maxwell–
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Boltzmann velocity dispersion law, may be unified under the umbrella of

classical measurement theory. In particular, the information aspect of classical

measurement theory – Fisher information – is the key to the unification.

Fisher information is part of an overall theory of physical law called the

principle of EPI. The unifying aspect of this principle will be shown by

example, i.e., by application to the major fields of physics: quantum mechanics,

classical electromagnetic theory, statistical mechanics, gravitational theory, etc.

The defining paradigm of each such discipline is a wave equation, a field

equation, or a distribution function of some sort. These will be derived by use

of the EPI principle. A separate chapter is devoted to each such derivation.

New effects are found, as well, by the information approach.

Such a unification is, perhaps, long overdue. Physics is often considered the

science of measurement. That is, physics is a quantification of observed

phenomena, and observed phenomena contain noise, or fluctuations. The

physical paradigm equations (mentioned above) define the fluctuations or errors

from ideal values that occur in such observations. That is, the physics lies in the

fluctuations. On the other hand, classical Fisher information is a scalar measure

of these very physical fluctuations. In this way, Fisher information is intrinsi-

cally tied into the laws of fluctuation that define theoretical physics.

EPI theory proposes that all physical theory results from observation: in

particular, imperfect observation. Thus, EPI is an observer-based theory of

physics. We are used to the concept of an imperfect observer in addressing

quantum theory, but the imperfect observer does not seem to be terribly

important to classical electromagnetic theory, for example, where it is assumed

(wrongly) that fields are known exactly. The same comment can be made about

the gravitational field of general relativity. What we will show is that, by

admitting that any observation is imperfect, one can derive both the Maxwell

equations of electromagnetic theory and the Einstein field equations of gravita-

tional theory. The EPI view of these equations is that they are expressions of

fluctuation in the values of measured field positions. Hence, the four-positions

(r, t) in Maxwell’s equations represent, in the EPI interpretation, random

excursions from an ideal, or mean, four-position over the field.

Dispensing with the artificiality of an ‘‘ideal’’ observer allows us to reap

many benefits for purposes of understanding physics. EPI is, more precisely, an

expression of the ‘‘inability to know’’ a measured quantity. For example, EPI

derives quantum mechanics from the viewpoint that an ideal position cannot be

known. We have found, from teaching the material in this book, that students

more easily understand quantum mechanics from this viewpoint than from the

conventional viewpoint of derivative operators that somehow represent energy

or momentum. Furthermore, that the same inability to know also leads to the
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Maxwell equations when applied to that scenario is even more satisfying. It is,

after all, a human desire to find common cause in the phenomena we see.

Unification is also, of course, the major aim of physics, although EPI is

probably not the ultimate unification that many physicists seek. Our aim is to

propose a comprehensive approach to deriving physical laws, based upon a

new theory of measurement. Currently, the approach presumes the existence of

sources and particles. EPI derives major classes of particles, but not all of

them, and does not derive the sources. (See Caveat 2 preceding.) We believe,

however, that EPI is a large step in the right direction. Given its successes so

far, the sources and remaining particles should eventually follow from these

considerations as well.

At this point we want to emphasize what this book is not about. This is not a

book whose primary emphasis is upon the ad hoc construction of Lagrangians

and their extremization. That is a well-plowed field. Although we often derive a

physical law via the extremization of a Lagrangian integral, the information

viewpoint we take leads to other types of solutions as well. Some solutions

arise, for example, out of zeroing the integral. (See the derivation of the Dirac

equation in Chapter 4.) Other laws arise out of a combination of both zeroing

and extremizing the integral. Similar remarks may be made about the process

by which the Lagrangians are formed. The zeroing and extremizing operations

actually allow us to solve for the Lagrangians of the scenarios (see Chaps. 4–9,

and 11). In this way we avoid, to a large degree, the ad hoc approach to

Lagrange construction that is conventionally taken. This subject is discussed

further in Secs. 1.1 and 1.8.8. The rationale for both zeroing and extremizing

the integral is developed in Chapter 3. It is one of information transfer from

phenomenon to data.

The layout of the book is, very briefly, as follows. The current chapter is

intended to derive and exemplify mathematical techniques that the reader

might not be familiar with. Chapter 1 is an introduction to the concept of

Fisher information. This is for single-parameter estimation problems. Chapter

2 generalizes the concept to multidimensional estimation problems, ending

with the scalar information form I that will be used thereafter in the

applications Chapters 4–11. Chapter 3 introduces the concept of the ‘‘bound

information’’ J , leading to the principle of EPI. This is derived from various

points of view. Chapters 4–15 apply EPI to various measurement scenarios,

in this way deriving the fundamental wave equations and distribution func-

tions of science. Chapter 16 is a chapter-by-chapter summary of the key

points made in the development. The reader in a hurry might choose to read

this first, to get an idea of the scope of the approach and the phenomena

covered.
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0.2 Level of approach

The level of physics and mathematics that the reader is presumed to have is

that of a senior undergraduate in physics. Calculus, through partial differential

equations, and introductory matrix theory are presumed parts of his/her back-

ground. Some notions from elementary probability theory are also used.

However, since these are intuitive in nature, the appropriate formula is usually

just given, with reference to a suitable text as needed.

A cursory scan through the chapters will show that a minimal amount of

prior knowledge of physical theory is actually used or needed. In fact, this is

the nature of the information approach taken and is one of its strengths. The

main physical input to each application of the approach is a simple law of

invariance that is obeyed by the given phenomenon.

The overall mathematical notation that is used is that of conventional

calculus, with additional matrix and vector notation as needed. Tensor notation

is only used where it is a ‘‘must’’ – in Chaps. 6 and 11 on classical and

quantum relativity, respectively. No extensive operator notation is used; this

author believes that specialized notation often hinders comprehension more

than it helps the student to understand theory. Sophistication without compre-

hension is definitely not our aim.

A major step of the information principle is the extremization and/or zeroing

of a scalar integral. The integral has the form

K �
ð
dxL [q, q9, x], x � (x1, . . ., xM ), dx � dx1 � � � dxM , q, x real,

q � (q1, . . ., qN ), qn � qn(x),

q9(x) � @q1=@x1, @q1=@x2, . . ., @qN=@xM : (0:1)

Mathematically, K � K[q(x)] is a ‘‘functional,’’ i.e., a single number that

depends upon the values of one or more functions q(x) continuously over the

domain of x. Physically, K has the form of an ‘‘action’’ integral, whose

extremization has conventionally been used to derive fundamental laws of

physics (Morse and Feshbach, 1953). Statistically, we will find that K is the

‘‘physical information’’ of an overall system consisting of a measurer and a

measured quantity. The limits of the integral are fixed and, usually, infinite. The

dimension M of x-space is usually 4 (space-time). The functions qn of x are

probability amplitudes, i.e., functions whose squares are probability densities.

The qn are to be found. They specify the physics of a measurement scenario.

Quantity L is a known function of the qn, their derivatives with respect to all

the xm, and x. L is called the ‘‘Lagrangian’’ density (Lagrange, 1788). It also

takes on the role of an information density, by our statistical interpretation.
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The solution to the problem of extremizing the information K is provided by

a mathematical approach called the ‘‘calculus of variations.’’ Since the book

makes extensive use of this approach, we derive it in the following.

0.3 Calculus of variations

0.3.1 Derivation of Euler–Lagrange equation

We find the answer to the lowest-dimension version M ¼ N ¼ 1 of the

problem, and then generalize the answer as needed. Consider the problem of

finding the single function q(x) that satisfies

K ¼
ðb
a

dxL [x, q(x), q9(x)] ¼ extrem:, q9(x) � dq(x)=dx: (0:2)

A well-known example is the case L ¼ 1
2
mq92 � V (q) of a particle of mass m

moving with displacement amplitude q at time x � t in a known field of

potential V (q). We will return to this problem below.

Suppose that the solution to the given problem is the function q(x) as shown

in Fig. 0.1. Of course, at the endpoints (a, b) the function has the values q(a),

q(b), respectively. Consider any finite departure q�(x, �) from q(x),

q�(x, �) ¼ q(x)þ ��(x), (0:3)

q(x)

q(x) � εη(x)

a b x

Fig. 0.1. Both the solution q(x) and any perturbation q(x)þ ��(x) from it must pass
through the endpoints x ¼ a and x ¼ b.
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with � a finite number and �(x) any perturbing function. Any function q�(x, �)
must pass through the endpoints so that, from Eq. (0.3),

�(a) ¼ �(b) ¼ 0: (0:4)

Equation (0.2) is, with this representation q�(x, �) for q(x),

K ¼
ðb
a

dxL [x, q�(x, �), q9�(x, �)] � K(�), (0:5)

a function of the small parameter �. (Once x has been integrated out, only the

�-dependence remains.)

We use ordinary calculus to find the solution. By the construction (0.3), K(�)
attains the extremum value when � ¼ 0. Since an extremum value is attained

there, K(�) must have zero slope at � ¼ 0 as well. That is,

@K

@�

�����
�¼0

¼ 0: (0:6)

The situation is sketched in Fig. 0.2.

We may evaluate the left-hand side of Eq. (0.6). By Eq. (0.5), L depends

upon � only through quantities q and q9. Therefore, differentiating Eq. (0.5)

gives

@K

@�
¼
ðb
a

dx
@L

@q�

@q�
@�

þ @L

@q9�

@q9�
@�

� �
: (0:7)

The second integral isðb
a

dx
@L

@q9�

@2q�
@x @�

¼ @L

@q9�

@q�
@�

�����
b

a

�
ðb
a

@q�
@�

d

dx

@L

@q9�

� �
dx (0:8)

K
zero slope

0
ε

Fig. 0.2. K as a function of perturbation size parameter �.
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after an integration by parts. (In the usual notation, setting u ¼ @L =@q9� and

dv ¼ @2q�=@x @�.)
We now show that the first right-hand term in Eq. (0.8) is zero. By Eq. (0.3),

@q�
@�

¼ �(x), (0:9)

so that by Eq. (0.4)

@q�
@�

����
b

¼ @q�
@�

����
a

¼ 0: (0:10)

This proves the assertion.

Combining this result with Eq. (0.7) gives

@K

@�
¼
ðb
a

dx
@L

@q�

@q�
@�

� @q�
@�

d

dx

@L

@q9�

� �� �
: (0:11)

Factoring out the common term @q�=@�, evaluating (0.11) at � ¼ 0, and using

Eqs. (0.3) and (0.9) give

@K

@�

�����
�¼0

¼
ðb
a

dx
@L

@q
� d

dx

@L

@q9

� �� �
�(x): (0:12)

By our criterion (0.6) this is to be zero at the solution q. However, the factor

�(x) is, by hypothesis, arbitrary. The only way the integral can be zero, then, is

for the factor in square brackets to be zero at each x, that is,

d

dx

@L

@q9

� �
¼ @L

@q
: (0:13)

This is the celebrated Euler–Lagrange solution to the problem. It is a

differential equation whose solution clearly depends upon the function L ,

called the ‘‘Lagrangian,’’ for the given problem. Some examples of its use

follow.

Example 1: Return to the Lagrangian given below Eq. (0.2) where x ¼ t is the

independent variable. We directly compute

@L

@q9
¼ mq9 and

@L

@q
¼ � @V

@q
: (0:14)

Using this in Eq. (0.13) gives as the solution

mq 0 ¼ � @V

@q
, (0:15)

that is, Newton’s second law of motion for the particle.

It may be noted that Newton’s law will not be derived in this manner in the

text to follow. The EPI principle is covariant, i.e., treats time and space in the
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same way, whereas the above approach (0.14), (0.15) is not. Instead, the EPI

approach will be used to derive the more general Einstein field equation, from

which Newton’s law follows as a special case (the weak-field limit). Or, see

Appendix D.

The reader may well question where this particular Lagrangian came from.

The answer is that it was chosen merely because it ‘‘works,’’ i.e., leads to

Newton’s law of motion. It has no prior significance in its own right. This has

been a well-known drawback to the use of Lagrangians. The next chapter

addresses this problem in detail.

Example 2: What is the shortest path between two points in a plane? The

integrated arc length between points x ¼ a and x ¼ b is

K ¼
ðb
a

dxL , L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q92

p
: (0:16)

Hence

@L

@q9
¼ 1

2
(1þ q92)�1=22q9,

@L

@q
¼ 0 (0:17)

here, so that the Euler–Lagrange Eq. (0.13) is

d

dx

q9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q92

p
 !

¼ 0: (0:18)

The immediate solution is

q9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q92

p ¼ const:, (0:19)

implying that q9 ¼ const:, so that q(x) ¼ Axþ B, with A, B ¼ const:, the

equation of a straight line. Hence we have shown that the path of extreme (not

necessarily shortest) distance between two fixed points in a plane is a straight

line. We will show below that the extremum is a minimum, as intuition

suggests.

Example 3: Maximum entropy problems (Jaynes, 1957a; 1957b) have the formð
dxL ¼ max:, L ¼ � p(x) ln p(x)þ ºp(x)þ �p(x) f (x) (0:20)

with º, � constants and f (x) a known ‘‘kernel’’ function. The first term in the

integral defines the ‘‘entropy’’ of a probability density function (PDF) p(x).

(Notice we use the notation p in place of q here.) We will say a lot more about

the concept of entropy in chapters to follow. Directly
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