CONTENTS

Preface to the first edition xi
Preface to the second edition xiii

1. **Graphs**
 Terminology of graphs and digraphs, Eulerian circuits, Hamiltonian circuits 1

2. **Trees**
 Cayley’s theorem, spanning trees and the greedy algorithm, search trees, strong connectivity 12

3. **Colorings of graphs and Ramsey’s theorem**
 Brooks’ theorem, Ramsey’s theorem and Ramsey numbers, the Lóvasz sieve, the Erdős–Szekeres theorem 24

4. **Turán’s theorem and extremal graphs**
 Turán’s theorem and extremal graph theory 37

5. **Systems of distinct representatives**
 Bipartite graphs, P. Hall’s condition, SDRs, König’s theorem, Birkhoff’s theorem 43

6. **Dilworth’s theorem and extremal set theory**
 Partially ordered sets, Dilworth’s theorem, Sperner’s theorem, symmetric chains, the Erdős–Ko–Rado theorem 53

7. **Flows in networks**
 The Ford–Fulkerson theorem, the integrality theorem, a generalization of Birkhoff’s theorem, circulations 61

8. **De Bruijn sequences**
 The number of De Bruijn sequences 71
9. Two $(0, 1, *)$ problems: addressing for graphs and a hash-coding scheme

Quadratic forms, Winkler’s theorem, associative block designs

10. The principle of inclusion and exclusion; inversion formulae

Inclusion–exclusion, derangements, Euler indicator, Möbius function, Möbius inversion, Burnside’s lemma, problème des ménages

11. Permanents

Bounds on permanents, Schrijver’s proof of the Minc conjecture, Fekete’s lemma, permanents of doubly stochastic matrices

12. The Van der Waerden conjecture

The early results of Marcus and Newman, London’s theorem, Egoritsjev’s proof

13. Elementary counting; Stirling numbers

Stirling numbers of the first and second kind, Bell numbers, generating functions

14. Recursions and generating functions

Elementary recurrences, Catalan numbers, counting of trees, Joyal theory, Lagrange inversion

15. Partitions

The function $p_k(n)$, the partition function, Ferrers diagrams, Euler’s identity, asymptotics, the Jacobi triple product identity, Young tableaux and the hook formula

16. $(0, 1)$-Matrices

Matrices with given line sums, counting $(0, 1)$-matrices

17. Latin squares

Orthogonal arrays, conjugates and isomorphism, partial and incomplete Latin squares, counting Latin squares, the Evans conjecture, the Dinitz conjecture

18. Hadamard matrices, Reed–Muller codes

Hadamard matrices and conference matrices, recursive constructions, Paley matrices, Williamson’s method, excess of a Hadamard matrix, first order Reed–Muller codes
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>Designs</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>The Erdős–De Bruijn theorem, Steiner systems, balanced incomplete block designs, Hadamard designs, counting, (higher) incidence matrices, the Wilson–Petrenjuk theorem, symmetric designs, projective planes, derived and residual designs, the Bruck–Ryser–Chowla theorem, constructions of Steiner triple systems, write-once memories</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Codes and designs</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Terminology of coding theory, the Hamming bound, the Singleton bound, weight enumerators and MacWilliams’ theorem, the Assmus–Mattson theorem, symmetry codes, the Golay codes, codes from projective planes</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Strongly regular graphs and partial geometries</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>The Bose–Mesner algebra, eigenvalues, the integrality condition, quasisymmetric designs, the Krein condition, the absolute bound, uniqueness theorems, partial geometries, examples, directed strongly regular graphs, neighborhood regular graphs</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Orthogonal Latin squares</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Pairwise orthogonal Latin squares and nets, Euler’s conjecture, the Bose–Parker–Shrikhande theorem, asymptotic existence, orthogonal arrays and transversal designs, difference methods, orthogonal subsquares</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Projective and combinatorial geometries</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Projective and affine geometries, duality, Pasch’s axiom, Desargues’ theorem, combinatorial geometries, geometric lattices, Greene’s theorem</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Gaussian numbers and q-analogues</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Chains in the lattice of subspaces, q-analogue of Sperner’s theorem, interpretation of the coefficients of the Gaussian polynomials, spreads</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Lattices and Möbius inversion</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>The incidence algebra of a poset, the Möbius function, chromatic polynomial of a graph, Weisner’s theorem, complementing permutations of geometric lattices, connected labeled graphs, MDS codes</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Combinatorial designs and projective geometries</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>Arcs and subplanes in projective planes, blocking sets, quadratic and Hermitian forms, unitals, generalized quadrangles, Möbius planes</td>
<td></td>
</tr>
</tbody>
</table>
27. Difference sets and automorphisms 369

- Block’s lemma, automorphisms of symmetric designs, Paley–Todd and Stanton–Sprott difference sets, Singer’s theorem

28. Difference sets and the group ring 383

- The Multiplier Theorem and extensions, homomorphisms and further necessary conditions

29. Codes and symmetric designs 396

- The sequence of codes of a symmetric design, Wilbrink’s theorem

30. Association schemes 405

- Examples, the eigenmatrices and orthogonality relations, formal duality, the distribution vector of a subset, Delsarte’s inequalities, polynomial schemes, perfect codes and tight designs

31. (More) algebraic techniques in graph theory 432

- Tournaments and the Graham–Pollak theorem, the spectrum of a graph, Hoffman’s theorem, Shannon capacity, applications of interlacing and Perron–Frobenius

32. Graph connectivity 451

- Vertex connectivity, Menger’s theorem, Tutte connectivity

33. Planarity and coloring 459

- The chromatic polynomial, Kuratowski’s theorem, Euler’s formula, the Five Color Theorem, list-colorings

34. Whitney Duality 472

- Whitney duality, circuits and cutsets, MacLane’s theorem

35. Embeddings of graphs on surfaces 491

- Embeddings on arbitrary surfaces, the Ringel–Youngs theorem, the Heawood conjecture, the Edmonds embedding technique

36. Electrical networks and squared squares 507

- The matrix-tree theorem, De Bruijn sequences, the network of a squared rectangle, Kirchhoff’s theorem

37. Pólya theory of counting 522

- The cycle index of a permutation group, counting orbits, weights, necklaces, the symmetric group, Stirling numbers
38. Baranyai’s theorem
 One-factorizations of complete graphs and complete designs

Appendix 1. Hints and comments on problems
 Hints, suggestions, and comments on the problems in each chapter

Appendix 2. Formal power series
 Formal power series ring, formal derivatives, inverse functions, residues, the Lagrange–Bürmann formula

Name Index
Subject Index