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314 String charge, electric charge,and particle physics

components BH m defined by

H
0kl = ε

klm BH m .

(15.33)

Here εi jk is totally antisymmetric and satisfies ε123 = 1. The vector �BH is called the field

strength dual to H . Substituting back into (15.32), we find

ε
klm

∂ BH m

∂xl
= κ

2 j0k −→ (∇ × �BH)k = κ
2 j0k .

(15.34)

At this stage, the relevant components of H have been encoded in a dual “magnetic field,”

and equation (15.32) has been recast in the form

∇ × �BH = κ
2 �j0 .

(15.35)

This is Ampère’s equation for the magnetic field of a current κ
2 �j0 . Note that, given our

ansatz, equation (15.35) is equivalent to the original equations for H ; if we cannot solve

it, there is no solution for H . The consistency condition for (15.35) is familiar. Since the

divergence of a curl is zero, the existence of a solution requires (once again) that �j0 be

divergenceless. Alternatively, given a closed one-dimensional curve � that is the boundary

of a two-dimensional surface S, the integral form of equation (15.35) is

1

κ2

∮
�

�BH · d�� =
∫

S

�j0 · d�a .

(15.36)

A curve � is said to link a string if the string pierces every surface whose boundary is �. If

the string ended at some point, the current �j0 would end at that point, as well, leading to a

nonvanishing ∇ · �j0 and, consequently, to an inconsistency in (15.35). If the string ended

at some point, then for any fixed � the left-hand side in (15.36) would be well defined, but

the right-hand side would depend on the choice of surface S. This is also an inconsistency.

Equation (15.36) naturally leads to the definition of the string number N announced at

the beginning of this section. The string number N associated with a curve � is defined as

1
2
N ≡

1

κ2

∫
�

�BH · �d� =
∫

S

�j0 · d�a .

(15.37)

We expect N to give the number of strings linked by the curve �. Let us calculate, as an

illustration, the value of N for the string stretched along the x1 axis that we considered

in the previous section. We assume, however, that there are only three spatial dimensions,

so that the results of the present section apply. Choosing the orientation so that f ′ (σ ) > 0,

equation (15.27) gives

j01 = 1
2
δ(y)δ(z) .

(15.38)

Consider now a closed curve � linking the string and lying in a plane of constant x . Assume

that on this plane the curve encloses a surface S whose oriented normal points in the positive

x direction. Since both the area vector and �j0 point in the x direction, we find

1
2
N =

∫
S

�j0 · d�a =
∫

S

j01 dydz = 1
2

∫
S

δ(y)δ(z) dydz = 1
2
.

(15.39)

As expected, we got N = 1. In general, N = N , where N is the number of strings linked

by the chosen curve. The orientation matters: if the curve links two strings with opposite

orientation, then their individual contributions to N will cancel. The �BH field in the above
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Figure 15.1 Comparing the computations of Maxwell charge and of string number in a

world with three spatial dimensions. The two-sphere which encloses the Maxwell charge

is analogous to the circle which links the strings.

example can be calculated easily. It is also possible to write an explicit expression for the

antisymmetric tensor field Bµν (Problem 15.4).

Let us compare with electromagnetism. For a localized Maxwell charge distribution, the

charge is calculated by integrating the electric charge density over a three-ball B3 enclosed

by a suitable two-sphere S2 that encloses the charges (see Figure 15.1). A set of parallel,

infinite strings is surrounded – but not enclosed – by a suitable circle S1 . This is the natural

analog: in the same way as electric charges do not touch the surface S2 that encloses them,

strings do not touch the “surface” S1 that links them. You cannot remove a Maxwell charge

without puncturing the two-sphere, nor can you remove a string without breaking the circle.

The computation analogous to the volume integral of Maxwell charge density, gives the

number of strings linked by an S1 as an integral of the local flux of string charge density over

a two-ball B2 (a disk) whose boundary is the S1 . Finally, in Maxwell theory the charge can

also be computed as a flux integral of the electric field over the surface S2 which encloses

the charges. The string number is computed analogously as an integral of the Kalb–Ramond

dual field strength �BH along the curve which links the strings.

Quick calculation 15.2 A string lies along the x1 axis in a world with four spatial dimen-

sions x1 , x2 , x3 , and x4 . Write a couple of equations that define a sphere that links the

string.

15.3 Strings ending on D-branes

We learned in Section 14.2 that there is a Maxwell field living on the world-volume of every

D-brane. Indeed, photon states arise from the quantization of open strings whose endpoints

lie on the D-brane. The quantization of closed strings in Section 13.3 revealed states that

arise from a Kalb–Ramond field Bµν living over all spacetime. We have seen that the string

couples electrically to the Bµν field. There is therefore an obvious question: If D-branes

have Maxwell fields, is there any object that carries electric charge for these fields? This

3 Electromagnetism and gravitation

in various dimensions

As a candidate theory of all interactions, string theory includes Maxwell electrody-

namics and its nonlinear cousins, as well as gravitation. We review the relativistic

formulation of four-dimensional electrodynamics and show how it facilitates the

definition of electrodynamics in other dimensions. We give a brief description of

Einstein’s gravity and use the Newtonian limit to discuss the relation between

Planck’s length and the gravitational constant in various dimensions. We study

the effect of compactification on the gravitational constant and explain how large

extra dimensions could escape detection.

3.1 Classical electrodynamics

Unlike Newtonian mechanics, classical electrodynamics is a relativistic theory. In fact,

Einstein was led by considerations of electrodynamics to formulate the special theory of

relativity. Electrodynamics has a particularly elegant formulation in which the relativistic

character of the theory is manifest. This relativistic formulation allows a natural extension

of the theory to higher dimensions. Before we discuss the relativistic formulation we must

review Maxwell’s equations. These equations describe the dynamics of electric and magnetic

fields.

Although most undergraduate and graduate courses in electrodynamics nowadays use the

international system of units (SI units), the Heaviside–Lorentz system of units is far more

convenient for discussions that involve relativity and extra dimensions. In this system of

units, Maxwell’s equations take the following form:

∇ × �E = −1

c

∂ �B
∂t

,

(3.1)

∇ · �B = 0 ,

(3.2)

∇ · �E = ρ ,

(3.3)

∇ × �B = 1

c
�j + 1

c

∂ �E
∂t

.
(3.4)

The above equations imply that �E and �B are measured with the same units. The first two

equations are the source-free Maxwell equations. The second two involve sources: the

charge density ρ, with units of charge per unit volume, and the current density �j , with

units of current per unit area. The Lorentz force law, which gives the rate of change of the
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relativistic momentum of a charged particle in an electromagnetic field, takes the form

d �p
dt

= q

(
�E + �v

c
× �B

)
.

(3.5)

Since the magnetic field �B is divergenceless, it can be written as the curl of a vector, the

well known vector potential �A:

�B = ∇ × �A .

(3.6)

In electrostatics the electric field �E has zero curl, and it is therefore written as (minus) the

gradient of a scalar, the well known scalar potential 
. In electrodynamics, as equation

(3.1) indicates, the curl of �E is not always zero. Substituting (3.6) into (3.1), we find a linear

combination of �E and of the time derivative of �A that has zero curl:

∇ ×
( �E + 1

c

∂ �A
∂t

)
= 0 .

(3.7)

The object inside parentheses is set equal to −∇
, and the electric field �E can be written

in terms of the scalar potential and the vector potential:

�E = −1

c

∂ �A
∂t

− ∇
 .

(3.8)

Equations (3.6) and (3.8) express the electric and magnetic fields in terms of potentials.

By doing so, the source-free Maxwell equations (3.1) and (3.2) are automatically satisfied.

Equations (3.3) and (3.4) contain additional information. They are used to derive equations

for �A and 
.

3.2 Electromagnetism in three dimensions

What is electromagnetism in three spacetime dimensions? One way to produce a theory

of electromagnetism in three dimensions is to begin with the four-dimensional theory and

eliminate one spatial coordinate. This procedure is called dimensional reduction.

In four spacetime dimensions, both electric and magnetic fields have three spatial compo-

nents: (Ex , Ey, Ez) and (Bx , By, Bz), respectively. It may seem likely that a reduction to a

world without a z coordinate would require dropping the z components from the two fields.

Surprisingly, this does not work! Maxwell’s equations and the Lorentz force law make it

impossible.

In order to construct a consistent three-dimensional theory, we must ensure that the

dynamics does not depend on the z direction, the direction that we want to eliminate. If

there is motion, it must remain restricted to the (x, y) plane. It is thus natural to require that

no quantity should have z-dependence. This does not necessarily mean dropping quantities

with a z index.

The Lorentz force law (3.5) is a useful guide to the construction of the lower-dimensional

theory. Suppose that there is no magnetic field. Then, in order to keep the z component of

momentum equal to zero we must have Ez = 0; the z component of the electric field must

go. The case of the magnetic field is more surprising. Assume that the electric field is zero.

If the velocity of the particle is a vector in the (x, y) plane, a component of the magnetic
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