As we enter the 21st century, chemistry has positioned itself as the central science. Its subject matter, atoms and the bonds between them, is now central to many of the life sciences on the one hand, as biological chemistry brings the subject to the atomic level, and to condensed matter and molecular physics on the other. Developments in quantum chemistry and in statistical mechanics have also created a fruitful overlap with mathematics and theoretical physics. Consequently, boundaries between chemistry and the other traditional sciences are fading and the term Molecular Science now describes this vibrant area of research.

Molecular science has made giant strides in recent years. Bolstered both by instrumental and theoretical developments, it covers the temporal scale down to femtoseconds, a timescale sufficient to define atomic dynamics with precision, and the spatial scale down to a small fraction of an Angstrom. This has led to a very sophisticated level of understanding of the properties of small molecule systems, but there has also been a remarkable series of developments in more complex systems. These include: protein engineering; surfaces and interfaces; polymers; colloids; and biophysical chemistry. This new series will provide a vehicle for the publication of advanced textbooks and monographs introducing and reviewing these exciting developments.

Readership
graduate students, academic researchers

Market
chemistry, biological chemistry, biochemistry, biological and chemical physics

Format
books in this series will usually be published in hardback and paperback

Frequency
We expect to publish one to two titles per year in this series in the first 3 years, and 3 – 5 thereafter

Further information: http://www.cambridge.org/series
Forthcoming Titles

Publication May 2003

Rotational Spectroscopy of Diatomic Molecules
John Brown
University of Oxford
and Alan Carrington
University of Southampton

Written to be the definitive text on the rotational spectroscopy of diatomic molecules, this book develops the theory behind the energy levels of diatomic molecules and then summarises the many experimental methods used to study their spectra in the gaseous state.

2003 247 x 174 mm 800 pages 295 line diagrams 74 tables
0 521 81009 4 Hardback c. £95.00
0 521 53078 4 Paperback c. £34.95

Publication November 2003

Energy Landscapes
David Wales
University of Cambridge

Proposed Future Topics to be Covered

Proteomics
Ion-channels
Membranes
Light emitting polymers
Infra-red spectra of ions
Quantum computational chemistry
Reaction dynamics
Femtosecond spectroscopy and biophysics
Molecular dynamics
Density functional theory
Clusters

If you have a specific book proposal for this series, or on any related topic, please contact Tim Fishlock, Chemistry and Materials Science Commissioning Editor, Cambridge University Press (tfishlock@cambridge.org).