
Part I

Introduction to the four themes

Part I of this book is devoted to outlining the basic principles of algebraic
statistics and their relationship to computational biology. Although some of
the ideas are complex, and their relationships intricate, the underlying phi-
losophy of our approach to biological sequence analysis is summarized in the
cartoon on the cover of the book. The fictional character is DiaNA, who ap-
pears throughout the book, and is the statistical surrogate for our biological
intuition. In the cartoon, DiaNA is walking randomly on a graph and is tossing
tetrahedral dice that can land on one of the letters A,C,G or T. A key feature
of the tosses is that the outcome depends on the direction of her route. We,
the observers, record the letters that appear on the successive throws, but are
unable to see the path that DiaNA takes on her graph. Our goal is to guess Di-
aNA’s path from the die roll outcomes. That is, we wish to make an inference
about missing data from certain observations.

In this book, the observed data are DNA sequences. A standard problem
of computational biology is to infer an optimal alignment for two given DNA
sequences. We shall see that this problem is precisely our example of guessing
DiaNA’s path. In Chapter 4 we give an introduction to the relevant biological
concepts, and we argue that our example is not just a toy problem but is
fundamental for designing efficient algorithms for analyzing real biological data.

The tetrahedral shape of DiaNA’s dice hint at convex polytopes. We shall
see in Chapter 2 that polytopes are geometric objects which play a key role
in statistical inference. Underlying the whole story is computational algebra,
featured in Chapter 3. Algebra is a universal language with which to describe
the process at the heart of DiaNA’s randomness.

Chapter 1 offers a fairly self-contained introduction to algebraic statistics.
Many concepts of statistics have a natural analog in algebraic geometry, and
there is an emerging dictionary which bridges the gap between these disciplines:

Statistics Algebraic Geometry
independence = Segre variety

log-linear model = toric variety
curved exponential family = manifold

mixture model = join of varieties
MAP estimation = tropicalization

· · · · · · = · · · · · · · · ·

Table 0.1. A glimpse of the statistics – algebraic geometry dictionary.

This dictionary is far from being complete, but it already suggests that al-
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gorithmic tools from algebraic geometry, most notably Gröbner bases, can be
used for computations in statistics that are of interest for computational bi-
ology applications. While we are well aware of the limitations of algebraic
algorithms, we nevertheless believe that computational biologists might ben-
efit from adding the techniques described in Chapter 3 to their tool box. In
addition, we have found the algebraic point of view to be useful in unifying and
developing many computational biology algorithms. For example, the results
on parametric sequence alignment in Chapter 7 do not require the language of
algebra to be understood or utilized, but were motivated by concepts such as
the Newton polytope of a polynomial. Chapter 2 discusses discrete algorithms
which provide efficient solutions to various problems of statistical inference.
Chapter 4 is an introduction to the biology, where we return to many of the
examples in Chapter 1, illustrating how the statistical models we have dis-
cussed play a prominent role in computational biology.

We emphasize that Part I serves mainly as an introduction and reference for
the chapters in Part II. We have therefore omitted many topics which are right-
fully considered to be an integral part of computational biology. In particular,
we have restricted ourselves to the topic of biological sequence analysis, and
within that domain have focused on eukaryotic genome analysis. Readers may
be interested in referring to [Durbin et al., 1998] or [Ewens and Grant, 2005],
our favorite introductions to the area of biological sequence analysis. Also use-
ful may be a text on molecular biology with an emphasis on genomics, such as
[Brown, 2002]. Our treatment of computational algebraic geometry in Chapter
3 is only a sliver taken from a mature and developed subject. The excellent
book by [Cox et al., 1997] fills in many of the details missing in our discussions.

Because Part I covers a wide range of topics, a comprehensive list of pre-
requisites would include a background in computer science, familiarity with
molecular biology, and introductory courses in statistics and abstract algebra.
Direct experience in computational biology would also be desirable. Of course,
we recognize that this is asking too much. Real-life readers may be experts
in one of these subjects but completely unfamiliar with others, and we have
taken this into account when writing the book.

Various chapters provide natural points of entry for readers with different
backgrounds. Those wishing to learn more about genomes can start with
Chapter 4, biologists interested in software tools can start with Section 2.5,
and statisticians who wish to brush up their algebra can start with Chapter 3.

In summary, the book is not meant to serve as the definitive text for algebraic
statistics or computational biology, but rather as a first invitation to biology
for mathematicians, and conversely as a mathematical primer for biologists.
In other words, it is written in the spirit of interdisciplinary collaboration that
is highlighted in the article Mathematics is Biology’s Next Microscope, Only

Better; Biology is Mathematics’ Next Physics, Only Better [Cohen, 2004].
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Statistics
Lior Pachter

Bernd Sturmfels

Statistics is the science of data analysis. The data to be encountered in this
book are derived from genomes. Genomes consist of long chains of DNA which
are represented by sequences in the letters A, C, G or T. These abbreviate the
four nucleic acids Adenine, Cytosine, Guanine and Thymine, which serve as
fundamental building blocks in molecular biology.

What do statisticians do with their data? They build models of the pro-
cess that generated the data and, in what is known as statistical inference,
draw conclusions about this process. Genome sequences are particularly in-
teresting data to draw conclusions from: they are the blueprint for life, and
yet their function, structure, and evolution are poorly understood. Statistical
models are fundamental for genomics, a point of view that was emphasized in
[Durbin et al., 1998].

The inference tools we present in this chapter look different from those found
in [Durbin et al., 1998], or most other texts on computational biology or math-
ematical statistics: ours are written in the language of abstract algebra. The
algebraic language for statistics clarifies many of the ideas central to the anal-
ysis of discrete data, and, within the context of biological sequence analysis,
unifies the main ingredients of many widely used algorithms.

Algebraic Statistics is a new field, less than a decade old, whose precise scope
is still emerging. The term itself was coined by Giovanni Pistone, Eva Ricco-
magno and Henry Wynn, with the title of their book [Pistone et al., 2000].
That book explains how polynomial algebra arises in problems from experi-
mental design and discrete probability, and it demonstrates how computational
algebra techniques can be applied to statistics.

This chapter takes some additional steps along the algebraic statistics path.
It offers a self-contained introduction to algebraic statistical models, with the
aim of developing inference tools relevant for studying genomes. Special em-
phasis will be placed on (hidden) Markov models and graphical models.

3
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4 L. Pachter and B. Sturmfels

1.1 Statistical models for discrete data

Imagine a fictional character named DiaNA who produces sequences of letters
over the four-letter alphabet {A, C, G, T}. An example of such a sequence is

CTCACGTGATGAGAGCATTCTCAGACCGTGACGCGTGTAGCAGCGGCTC. (1.1)

The sequences produced by DiaNA are called DNA sequences. DiaNA gen-
erates her sequences by some random process. When modeling this random
process we make assumptions about part of its structure. The resulting sta-
tistical model is a family of probability distributions, one of which governs the
process by which DiaNA generates her sequences. In this book we consider
parametric statistical models, which are families of probability distributions
that can be parameterized by finitely many parameters. One important task
is to estimate DiaNA’s parameters from the sequences she generates. Estima-
tion is also called learning in the computer science literature.

DiaNA uses tetrahedral dice to generate DNA sequences. Each die has the
shape of a tetrahedron, and its four faces are labeled with the letters A, C, G
and T. If DiaNA rolls a fair die then each of the four letters will appear with
the same probability 1/4. If she uses a loaded tetrahedral die then the four
probabilities can be any four non-negative numbers that sum to one.

Example 1.1 Suppose that DiaNA uses three tetrahedral dice. Two of her
dice are loaded and one die is fair. The probabilities of rolling the four letters
are known to us. They are the numbers in the rows of the following table:

A C G T
first die 0.15 0.33 0.36 0.16

second die 0.27 0.24 0.23 0.26
third die 0.25 0.25 0.25 0.25

. (1.2)

DiaNA generates each letter in her DNA sequence independently using the
following process. She first picks one of her three dice at random, where her
first die is picked with probability θ1, her second die is picked with probability
θ2, and her third die is picked with probability 1 − θ1 − θ2. The probabilities
θ1 and θ2 are unknown to us, but we do know that DiaNA makes one roll with
the selected die, and then she records the resulting letter, A, C, G or T.

In the setting of biology, the first die corresponds to DNA that is G + C rich,
the second die corresponds to DNA that is G + C poor, and the third is a fair
die. We got the specific numbers in the first two rows of (1.2) by averaging
the rows of the two tables in [Durbin et al., 1998, page 50] (for more on this
example and its connection to CpG island identification see Chapter 4).

Suppose we are given the DNA sequence of length N = 49 shown in (1.1).
One question that may be asked is whether the sequence was generated by
DiaNA using this process, and, if so, which parameters θ1 and θ2 did she use?

Let pA, pC, pG and pT denote the probabilities that DiaNA will generate
any of her four letters. The statistical model we have discussed is written in
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Statistics 5

algebraic notation as

pA = −0.10 · θ1 + 0.02 · θ2 + 0.25,

pC = 0.08 · θ1 − 0.01 · θ2 + 0.25,

pG = 0.11 · θ1 − 0.02 · θ2 + 0.25,

pT = −0.09 · θ1 + 0.01 · θ2 + 0.25.

Note that pA+pC+pG+pT = 1, and we get the three distributions in the rows
of (1.2) by specializing (θ1, θ2) to (1, 0), (0, 1) and (0, 0) respectively.

To answer our questions, we consider the likelihood of observing the partic-
ular data (1.1). Since each of the 49 characters was generated independently,
that likelihood is the product of the probabilities of the individual letters:

L = pCpTpCpApCpG · · · pA = p10
A · p14

C · p15
G · p10

T .

This expression is the likelihood function of DiaNA’s model for the data (1.1).
To stress the fact that the parameters θ1 and θ2 are unknowns we write

L(θ1, θ2) = pA(θ1, θ2)10 · pC(θ1, θ2)14 · pG(θ1, θ2)15 · pT(θ1, θ2)10.

This likelihood function is a real-valued function on the triangle

Θ =
{
(θ1, θ2) ∈ R

2 : θ1 > 0 and θ2 > 0 and θ1 + θ2 < 1
}
.

In the maximum likelihood framework we estimate the parameter values that
DiaNA used by those values which make the likelihood of observing the data
as large as possible. Thus our task is to maximize L(θ1, θ2) over the triangle
Θ. It is equivalent but more convenient to maximize the log-likelihood function

�(θ1, θ2) = log
(
L(θ1, θ2)

)
= 10 · log(pA(θ1, θ2)) + 14 · log(pC(θ1, θ2))

+ 15 · log(pG(θ1, θ2)) + 10 · log(pT(θ1, θ2)).

The solution to this optimization problem can be computed in closed form, by
equating the two partial derivatives of the log-likelihood function to zero:

∂�

∂θ1
=

10
pA

· ∂pA
∂θ1

+
14
pC

· ∂pC
∂θ1

+
15
pG

· ∂pG
∂θ1

+
10
pT

· ∂pT
∂θ1

= 0,

∂�

∂θ2
=

10
pA

· ∂pA
∂θ2

+
14
pC

· ∂pC
∂θ2

+
15
pG

· ∂pG
∂θ2

+
10
pT

· ∂pT
∂θ2

= 0.

Each of the two expressions is a rational function in (θ1, θ2), i.e. it can be
written as a quotient of two polynomials. By clearing denominators and by
applying the algebraic technique of Gröbner bases (Section 3.1), we can trans-
form the two equations above into the equivalent equations

13003050 · θ1 + 2744 · θ2
2 − 2116125 · θ2 − 6290625 = 0,

134456 · θ3
2 − 10852275 · θ2

2 − 4304728125 · θ2 + 935718750 = 0.
(1.3)

The second equation has a unique solution θ̂2 between 0 and 1. The corre-
sponding value of θ̂1 is obtained by solving the first equation. We find

(θ̂1, θ̂2) =
(
0.5191263945, 0.2172513326

)
.
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6 L. Pachter and B. Sturmfels

The log-likelihood function attains its maximum value at this point:

�(θ̂1, θ̂2) = −67.08253037.

The corresponding probability distribution

(p̂A, p̂C, p̂G, p̂T) =
(
0.202432, 0.289358, 0.302759, 0.205451

)
(1.4)

is very close to the empirical distribution

1
49

(10, 14, 15, 10) =
(
0.204082, 0.285714, 0.306122, 0.204082

)
. (1.5)

We conclude that the proposed model is a good fit for the data (1.1). To
make this conclusion precise we would need to employ a technique like the χ2

test [Bickel and Doksum, 2000], but we keep our little example informal and
simply assert that our calculation suggests that DiaNA used the probabilities
θ̂1 and θ̂2 for choosing among her dice.

We now turn to our general discussion of statistical models for discrete data.
A statistical model is a family of probability distributions on some state space.
In this book we assume that the state space is finite, but possibly quite large.
We often identify the state space with the set of the first m positive integers,

[m] := {1, 2, . . . , m}. (1.6)

A probability distribution on the set [m] is a point in the probability simplex

∆m−1 :=
{

(p1, . . . , pm) ∈ R
m :

m∑
i=1

pi = 1 and pj ≥ 0 for all j
}
. (1.7)

The index m − 1 indicates the dimension of the simplex ∆m−1. We write ∆
for the simplex ∆m−1 when the underlying state space [m] is understood.

Example 1.2 The state space for DiaNA’s dice is the set {A, C, G, T} which
we identify with the set [4] = {1, 2, 3, 4}. The simplex ∆ is a tetrahedron.
The probability distribution associated with a fair die is the point (1

4 , 1
4 , 1

4 , 1
4),

which is the centroid of the tetrahedron ∆. Equivalently, we may think about
our model via the concept of a random variable: that is, a function X taking
values in the state space {A, C, G, T} . Then the point corresponding to a fair die
gives the probability distribution of X as Prob(X = A) = 1

4 , Prob(X = C) =
1
4 , Prob(X = G) = 1

4 , Prob(X = T) = 1
4 . All other points in the tetrahedron

∆ correspond to loaded dice.

A statistical model for discrete data is a family of probability distributions
on [m]. Equivalently, a statistical model is simply a subset of the simplex
∆. The ith coordinate pi represents the probability of observing the state i,
and in that capacity pi must be a non-negative real number. However, when
discussing algebraic computations (as in Chapter 3), we sometimes relax this
requirement and allow pi to be negative or even a complex number.
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Statistics 7

An algebraic statistical model arises as the image of a polynomial map

f : R
d → R

m , θ = (θ1, . . . , θd) �→
(
f1(θ), f2(θ), . . . , fm(θ)

)
. (1.8)

The unknowns θ1, . . . , θd represent the model parameters. In most cases of
interest, d is much smaller than m. Each coordinate function fi is a polynomial
in the d unknowns, which means it has the form

fi(θ) =
∑
a∈Nd

ca · θa1
1 θa2

2 · · · θad
d , (1.9)

where all but finitely many of the coefficients ca ∈ R are zero. We use N to
denote the non-negative integers: that is, N = {0, 1, 2, 3, . . .}.

The parameter vector (θ1, . . . , θd) ranges over a suitable non-empty open
subset Θ of R

d which is called the parameter space of the model f . We assume
that the parameter space Θ satisfies the condition

fi(θ) > 0 for all i ∈ [m] and θ ∈ Θ. (1.10)

Under these hypotheses, the following two conditions are equivalent:

f(Θ) ⊆ ∆ ⇐⇒ f1(θ) + f2(θ) + · · · + fm(θ) = 1. (1.11)

This is an identity of polynomial functions, which means that all non-constant
terms of the polynomials fi cancel, and the constant terms add up to 1. If
(1.11) holds, then our model is simply the set f(Θ).

Example 1.3 DiaNA’s model in Example 1.1 is a mixture model which mixes
three distributions on {A, C, G, T}. Geometrically, the image of DiaNA’s map

f : R
2 → R

4 , (θ1, θ2) �→ (pA, pC, pG, pT)

is the plane in R
4 which is cut out by the two linear equations

pA + pC + pG + pT = 1 and 11 pA + 15 pG = 17 pC + 9 pT. (1.12)

These two linear equations are algebraic invariants of the model. The plane
they define intersects the tetrahedron ∆ in the quadrangle whose vertices are(

0, 0,
3
8
,
5
8

)
,

(
0,

15
32

,
17
32

, 0
)

,

(
9
20

, 0, 0,
11
20

)
and

(
17
28

,
11
28

, 0, 0
)

. (1.13)

Inside this quadrangle is the triangle f(Θ) whose vertices are the three rows of
the table in (1.2). The point (1.4) lies in that triangle and is near (1.5).

Some statistical models are given by a polynomial map f for which (1.11)
does not hold. If this is the case then we scale each vector in f(Θ) by the
positive quantity

∑m
i=1 fi(θ). Regardless of whether (1.11) holds or not, our

model is the family of all probability distributions on [m] of the form

1∑m
i=1 fi(θ)

·
(
f1(θ), f2(θ), . . . , fm(θ)

)
where θ ∈ Θ. (1.14)

We generally try to keep things simple and assume that (1.11) holds. However,
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8 L. Pachter and B. Sturmfels

there are some cases, such as the general toric model in the next section, when
the formulation in (1.14) is more natural. It poses no great difficulty to extend
our theorems and algorithms from polynomials to rational functions.

Our data are typically given in the form of a sequence of observations

i1, i2, i3, i4, . . . , iN . (1.15)

Each data point ij is an element from our state space [m]. The integer N ,
which is the length of the sequence, is called the sample size. Assuming that
the observations (1.15) are independent and identically distributed samples, we
can summarize the data (1.15) in the data vector u = (u1, u2, . . . , um) where
uk is the number of indices j ∈ [N ] such that ij = k. Hence u is a vector in N

m

with u1 + u2 + · · ·+ um = N . The empirical distribution corresponding to the
data (1.15) is the scaled vector 1

N u which is a point in the probability simplex
∆. The coordinates ui/N of this vector are the observed relative frequencies
of the various outcomes.

We consider the model f to be a “good fit” for the data u if there exists a
parameter vector θ ∈ Θ such that the probability distribution f(θ) is very close,
in a statistically meaningful sense [Bickel and Doksum, 2000], to the empirical
distribution 1

N u. Suppose we draw N times at random (independently and
with replacement) from the set [m] with respect to the probability distribution
f(θ). Then the probability of observing the sequence (1.15) equals

L(θ) = fi1(θ)fi2(θ) · · · fiN (θ) = f1(θ)u1 · · · fm(θ)um . (1.16)

This expression depends on the parameter vector θ as well as the data vector
u. However, we think of u as being fixed and then L is a function from Θ to
the positive real numbers. It is called the likelihood function to emphasize that
it is a function that depends on θ. Note that any reordering of the sequence
(1.15) leads to the same data vector u. Hence the probability of observing the
data vector u is equal to

(u1 + u2 + · · · + um)!
u1!u2! · · ·um!

· L(θ). (1.17)

The vector u plays the role of a sufficient statistic for the model f . This means
that the likelihood function L(θ) depends on the data (1.15) only through u.
In practice one often replaces the likelihood function by its logarithm

�(θ) = log L(θ) = u1·log(f1(θ))+u2·log(f2(θ))+· · ·+um·log(fm(θ)). (1.18)

This is the log-likelihood function. Note that �(θ) is a function from the pa-
rameter space Θ ⊂ R

d to the negative real numbers R<0.
The problem of maximum likelihood estimation is to maximize the likelihood

function L(θ) in (1.16), or, equivalently, the scaled likelihood function (1.17),
or, equivalently, the log-likelihood function �(θ) in (1.18). Here θ ranges over
the parameter space Θ ⊂ R

d. Formally, we consider the optimization problem:

Maximize �(θ) subject to θ ∈ Θ. (1.19)
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Statistics 9

A solution to this optimization problem is denoted θ̂ and is called a maximum
likelihood estimate of θ with respect to the model f and the data u.

Sometimes, if the model satisfies certain properties, it may be that there
always exists a unique maximum likelihood estimate θ̂. This happens for linear
models and toric models, due to the concavity of their log-likelihood function, as
we shall see in Section 1.2. For most statistical models, however, the situation
is not as simple. First, a maximum likelihood estimate need not exist (since
we assume Θ to be open). Second, even if θ̂ exists, there can be more than one
global maximum, in fact, there can be infinitely many of them. And, third,
it may be very difficult to find any one of these global maxima. In that case,
one may content oneself with a local maximum of the likelihood function. In
Section 1.3 we shall discuss the EM algorithm which is a numerical method for
finding solutions to the maximum likelihood estimation problem (1.19).

1.2 Linear models and toric models

In this section we introduce two classes of models which, under weak conditions
on the data, have the property that the likelihood function has exactly one local
maximum θ̂ ∈ Θ. Since the parameter spaces of the models are convex, the
maximum likelihood estimate θ̂ can be computed using any of the hill-climbing
methods of convex optimization, such as the gradient ascent algorithm.

1.2.1 Linear models

An algebraic statistical model f : R
d → R

m is called a linear model if each of
its coordinate polynomials fi(θ) is a linear function. Being a linear function
means that there exist real numbers ai1, . . . , a1d and bi such that

fi(θ) =
d∑

j=1

aijθj + bi. (1.20)

The m linear functions f1(θ), . . . , fm(θ) have the property that their sum is the
constant function 1. DiaNA’s model studied in Example 1.1 is a linear model.
For the data discussed in that example, the log-likelihood function �(θ) had a
unique local maximum on the parameter triangle Θ. The following proposition
states that this desirable property holds for every linear model.

Proposition 1.4 For any linear model f and data u ∈ N
m, the log-likelihood

function �(θ) =
∑m

i=1 ui log(fi(θ)) is concave. If the linear map f is one-to-
one and all ui are positive then the log-likelihood function is strictly concave.

Proof Our assertion that the log-likelihood function �(θ) is concave states
that the Hessian matrix

(
∂2�

∂θj ∂θk

)
is negative semi-definite for every θ ∈ Θ. In

other words, we need to show that every eigenvalue of this symmetric matrix is
non-positive. The partial derivative of the linear function fi(θ) in (1.20) with
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10 L. Pachter and B. Sturmfels

respect to the unknown θj is the constant aij . Hence the partial derivative of
the log-likelihood function �(θ) equals

∂�

∂θj
=

m∑
i=1

uiaij

fi(θ)
. (1.21)

Taking the derivative again, we get the following formula for the Hessian matrix(
∂2�

∂θj ∂θk

)
= −AT · diag

(
u1

f1(θ)2
,

u2

f2(θ)2
, . . . ,

um

fm(θ)2

)
· A. (1.22)

Here A is the m × d matrix whose entry in row i and column j equals aij .
This shows that the Hessian (1.22) is a symmetric d× d matrix each of whose
eigenvalues is non-positive.

The argument above shows that �(θ) is a concave function. Moreover, if the
linear map f is one-to-one then the matrix A has rank d. In that case, provided
all ui are strictly positive, all eigenvalues of the Hessian are strictly negative,
and we conclude that �(θ) is strictly concave for all θ ∈ Θ.

The critical points of the likelihood function �(θ) of the linear model f are
the solutions to the system of d equations in d unknowns which are obtained
by equating (1.21) to zero. What we get are the likelihood equations

m∑
i=1

uiai1

fi(θ)
=

m∑
i=1

uiai2

fi(θ)
= · · · =

m∑
i=1

uiaid

fi(θ)
= 0. (1.23)

The study of these equations involves the combinatorial theory of hyperplane
arrangements. Indeed, consider the m hyperplanes in d-space R

d which are
defined by the equations fi(θ) = 0 for i = 1, 2, . . . , m. The complement of this
arrangement of hyperplanes in R

d is the set of parameter values

C =
{

θ ∈ R
d : f1(θ)f2(θ)f3(θ) · · · fm(θ) 	= 0

}
.

This set is the disjoint union of finitely many open convex polyhedra defined
by inequalities fi(θ) > 0 or fi(θ) < 0. These polyhedra are called the re-
gions of the arrangement. Some of these regions are bounded, and others are
unbounded. The natural parameter space of the linear model coincides with
exactly one bounded region. The other bounded regions would give rise to neg-
ative probabilities. However, they are relevant for the algebraic complexity of
our problem. Let µ denote the number of bounded regions of the arrangement.

Theorem 1.5 (Varchenko’s Formula) If the ui are positive, then the like-
lihood equations (1.23) of the linear model f have precisely µ distinct real solu-
tions, one in each bounded region of the hyperplane arrangement {fi = 0}i∈[m].
All solutions have multiplicity one and there are no other complex solutions.

This result first appeared in [Varchenko, 1995]. The connection to maximum
likelihood estimation was explored in [Catanese et al., 2005].

We already saw one instance of Varchenko’s Formula in Example 1.1. The
four lines defined by the vanishing of DiaNA’s probabilities pA, pC, pG or pT
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