This book provides an introduction to the major mathematical structures used in physics today. It covers the concepts and techniques needed for topics such as group theory, Lie algebras, topology, Hilbert spaces and differential geometry. Important theories of physics such as classical and quantum mechanics, thermodynamics, and special and general relativity are also developed in detail, and presented in the appropriate mathematical language.

The book is suitable for advanced undergraduate and beginning graduate students in mathematical and theoretical physics. It includes numerous exercises and worked examples to test the reader's understanding of the various concepts, as well as extending the themes covered in the main text. The only prerequisites are elementary calculus and linear algebra. No prior knowledge of group theory, abstract vector spaces or topology is required.

PETER SZEKERES received his Ph.D. from King's College London in 1964, in the area of general relativity. He subsequently held research and teaching positions at Cornell University, King's College and the University of Adelaide, where he stayed from 1971 till his recent retirement. Currently he is a visiting research fellow at that institution. He is well known internationally for his research in general relativity and cosmology, and has an excellent reputation for his teaching and lecturing.

A Course in Modern Mathematical Physics

Groups, Hilbert Space and Differential Geometry

Peter Szekeres

Formerly of University of Adelaide

Cambridge University Press				
0521829607 - A Course in Modern Mathematica	l Physics: Gro	ups, Hilbert	Space and	Differential Geometry
Peter Szekeres				
Frontmatter				
Moreinformation				

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© P. Szekeres 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times New Roman 10/13 pt. and Frutiger System $IAT_EX 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Szekeres, Peter, 1940-

A course in modern mathematical physics: groups, Hilbert space, and differential geometry / Peter Szekeres. p. cm. Includes bibliographical references and index.

ISBN 0 521 82960 7 – ISBN 0 521 53645 6 (pb.) 1. Mathematical physics. I. Title.

QC20 S965 2004 530.15-dc22

ISBN 0 521 82960 7 hardback ISBN 0 521 53645 6 paperback 2004045675

The publisher has used its best endeavours to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

	Prej	<i>page</i> ix	
		nowledgements	xiii
1	Sets	and structures	1
	1.1	Sets and logic	2
	1.2	Subsets, unions and intersections of sets	5
		Cartesian products and relations	7
		Mappings	10
		Infinite sets	13
	1.6	Structures	17
	1.7	Category theory	23
2	Gro	ups	27
	2.1	Elements of group theory	27
	2.2	Transformation and permutation groups	30
	2.3	Matrix groups	35
	2.4	Homomorphisms and isomorphisms	40
	2.5	Normal subgroups and factor groups	45
	2.6	Group actions	49
	2.7	Symmetry groups	52
3 Ve		tor spaces	59
	3.1	Rings and fields	59
	3.2	Vector spaces	60
	3.3	Vector space homomorphisms	63
	3.4	Vector subspaces and quotient spaces	66
	3.5	Bases of a vector space	72
	3.6	Summation convention and transformation of bases	81
	3.7	Dual spaces	88
4	Lin	ear operators and matrices	98
	4.1	Eigenspaces and characteristic equations	99
	4.2	Jordan canonical form	107

Coi	ntents		
	4.3	Linear ordinary differential equations	
	4.4	Introduction to group representation theory	
5	Inne	r product spaces	
	5.1	Real inner product spaces	
	5.2	Complex inner product spaces	
	5.3	Representations of finite groups	
6	Alge	bras	
	6.1	Algebras and ideals	
	6.2	Complex numbers and complex structures	
	6.3	Quaternions and Clifford algebras	
	6.4	Grassmann algebras	
	6.5	Lie algebras and Lie groups	
7	Tens	ors	
	7.1	Free vector spaces and tensor spaces	
	7.2	Multilinear maps and tensors	
	7.3	Basis representation of tensors	
	7.4	Operations on tensors	
8	Exte	rior algebra	
	8.1	<i>r</i> -Vectors and <i>r</i> -forms	
	8.2	Basis representation of <i>r</i> -vectors	
	8.3	Exterior product	
	8.4	Interior product	
	8.5	Oriented vector spaces	
	8.6	The Hodge dual	
9	Spec	ial relativity	
	9.1	Minkowski space-time	
	9.2	Relativistic kinematics	
	9.3	Particle dynamics	
	9.4	Electrodynamics	
	9.5	Conservation laws and energy-stress tensors	
10	Торо	ology	
	10.1	Euclidean topology	
	10.2	General topological spaces	
	10.3		
	10.4	*	
	10.5		
	10.6		

	10.7	Connected spaces	273
	10.8	Topological groups	276
	10.9	Topological vector spaces	279
11	Meas	sure theory and integration	287
	11.1	Measurable spaces and functions	287
	11.2	Measure spaces	292
	11.3	Lebesgue integration	301
12	Distr	308	
	12.1	Test functions and distributions	309
	12.2	Operations on distributions	314
	12.3	Fourier transforms	320
	12.4	Green's functions	323
13	Hilbe	ert spaces	330
	13.1	Definitions and examples	330
	13.2	Expansion theorems	335
	13.3	Linear functionals	341
	13.4	Bounded linear operators	344
	13.5	Spectral theory	351
	13.6	Unbounded operators	357
14	Quar	ntum mechanics	366
	14.1	Basic concepts	366
	14.2	Quantum dynamics	379
	14.3	Symmetry transformations	387
	14.4	Quantum statistical mechanics	397
15	Diffe	prential geometry	410
	15.1	Differentiable manifolds	411
	15.2	Differentiable maps and curves	415
	15.3	Tangent, cotangent and tensor spaces	417
	15.4	Tangent map and submanifolds	426
	15.5	Commutators, flows and Lie derivatives	432
	15.6	Distributions and Frobenius theorem	440
16	Diffe	rentiable forms	447
	16.1	Differential forms and exterior derivative	447
	16.2	Properties of exterior derivative	451
	16.3	Frobenius theorem: dual form	454
	16.4	Thermodynamics	457
	16.5	Classical mechanics	464

Contents

17	Integ	gration on manifolds	481
	17.1	Partitions of unity	482
	17.2	Integration of <i>n</i> -forms	484
	17.3	Stokes' theorem	486
	17.4	Homology and cohomology	493
	17.5		500
18	Coni	nections and curvature	506
	18.1	Linear connections and geodesics	506
	18.2	Covariant derivative of tensor fields	510
	18.3	Curvature and torsion	512
	18.4	Pseudo-Riemannian manifolds	516
	18.5	Equation of geodesic deviation	522
	18.6	The Riemann tensor and its symmetries	524
	18.7	Cartan formalism	527
	18.8	General relativity	534
	18.9	Cosmology	548
	18.10	0 Variation principles in space-time	553
19	Lie g	groups and Lie algebras	559
	19.1	Lie groups	559
	19.2	The exponential map	564
	19.3	Lie subgroups	569
	19.4	Lie groups of transformations	572
	19.5		578
	Bibli	ography	587
	Index	x	589

Preface

After some twenty years of teaching different topics in the Department of Mathematical Physics at the University of Adelaide I conceived the rather foolhardy project of putting all my undergraduate notes together in one single volume under the title *Mathematical Physics*. This undertaking turned out to be considerably more ambitious than I had originally expected, and it was not until my recent retirement that I found the time to complete it.

Over the years I have sometimes found myself in the midst of a vigorous and at times quite acrimonious debate on the difference between theoretical and mathematical physics. This book is symptomatic of the difference. I believe that mathematical physicists put the mathematics first, while for theoretical physicists it is the physics which is uppermost. The latter seek out those areas of mathematics for the use they may be put to, while the former have a more unified view of the two disciplines. I don't want to say one is better than the other – it is simply a different outlook. In the big scheme of things both have their place but, as this book no doubt demonstrates, my personal preference is to view mathematical physics as a branch of mathematics.

The classical texts on mathematical physics which I was originally brought up on, such as Morse and Feshbach [7], Courant and Hilbert [1], and Jeffreys and Jeffreys [6] are essentially books on differential equations and linear algebra. The flavour of the present book is quite different. It follows much more the lines of Choquet-Bruhat, de Witt-Morette and Dillard-Bleick [14] and Geroch [3], in which mathematical structures rather than mathematical analysis is the main thrust. Of these two books, the former is possibly a little daunting as an introductory undergraduate text, while Geroch's book, written in the author's inimitably delightful lecturing style, has occasional tendencies to overabstraction. I resolved therefore to write a book which covers the material of these texts, assumes no more mathematical knowledge than elementary calculus and linear algebra, and demonstrates clearly how theories of modern physics fit into various mathematical structures. How well I have succeeded must be left to the reader to judge.

At times I have been caught by surprise at the natural development of ideas in this book. For example, how is it that quantum mechanics appears before classical mechanics? The reason is certainly not on historical grounds. In the natural organization of mathematical ideas, algebraic structures appear before geometrical or topological structures, and linear structures are evidently simpler than non-linear. From the point of view of mathematical simplicity quantum mechanics, being a purely linear theory in a quasi-algebraic space (Hilbert space), is more elementary than classical mechanics, which can be expressed in

Preface

terms of non-linear dynamical systems in differential geometry. Yet, there is something of a paradox here, for as Niels Bohr remarked: 'Anyone who is not shocked by quantum mechanics does not understand it'. Quantum mechanics is not a difficult theory to express mathematically, but it is almost impossible to make epistomological sense of it. I will not even attempt to answer these sorts of questions, and the reader must look elsewhere for a discussion of quantum measurement theory [5].

Every book has its limitations. At some point the author must call it a day, and the omissions in this book may prove a disappointment to some readers. Some of them are a disappointment to me. Those wanting to go further might explore the theory of fibre bundles and gauge theories [2, 8, 13], as the stage is perfectly set for this subject by the end of the book. To many, the biggest omission may be the lack of any discussion of quantum field theory. This, however, is an area that seems to have an entirely different flavour to the rest of physics as its mathematics is difficult if nigh on impossible to make rigorous. Even quantum mechanics has a 'classical' flavour by comparison. It is such a huge subject that I felt daunted to even begin it. The reader can only be directed to a number of suitable books to introduce them to this field [10-14].

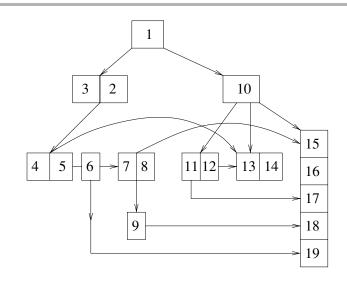
Structure of the book

This book is essentially in two parts, modern algebra and geometry (including topology). The early chapters begin with set theory, group theory and vector spaces, then move to more advanced topics such as Lie algebras, tensors and exterior algebra. Occasionally ideas from group representation theory are discussed. If calculus appears in these chapters it is of an elementary kind. At the end of this algebraic part of the book, there is included a chapter on special relativity (Chapter 9), as it seems a nice example of much of the algebra that has gone before while introducing some notions from topology and calculus to be developed in the remaining chapters. I have treated it as a kind of crossroads: Minkowski space acts as a link between algebraic and geometric structures, while at the same time it is the first place where physics and mathematics are seen to interact in a significant way.

In the second part of the book, we discuss structures that are essentially geometrical in character, but generally have an algebraic component as well. Beginning with topology (Chapter 10), structures are created that combine both algebra and the concept of continuity. The first of these is Hilbert space (Chapter 13), which is followed by a chapter on quantum mechanics. Chapters on measure theory (Chapter 11) and distribution theory (Chapter 12) precede these two. The final chapters (15–19) deal with differential geometry and examples of physical theories using manifold theory as their setting – thermodynamics, classical mechanics, general relativity and cosmology. A flow diagram showing roughly how the chapters interlink is given below.

Exercises and problems are interspersed throughout the text. The exercises are not designed to be difficult – their aim is either to test the reader's understanding of a concept just defined or to complete a proof needing one or two more steps. The problems at ends of sections are more challenging. Frequently they are in many parts, taking up a thread

Preface



of thought and running with it. This way most closely resembles true research, and is my preferred way of presenting problems rather than the short one-liners often found in text books. Throughout the book, newly defined concepts are written in bold type. If a concept is written in italics, it has been introduced in name only and has yet to be defined properly.

References

- [1] R. Courant and D. Hilbert. *Methods of Mathematical Physics*, vols 1 and 2. New York, Interscience, 1953.
- [2] T. Frankel. The Geometry of Physics. New York, Cambridge University Press, 1997.
- [3] R. Geroch. Mathematical Physics. Chicago, The University of Chicago Press, 1985.
- [4] J. Glimm and A. Jaffe. *Quantum Physics: A Functional Integral Point of View*. New York, Springer-Verlag, 1981.
- [5] J. M. Jauch. Foundations of Quantum Mechanics. Reading, Mass., Addison-Wesley, 1968.
- [6] H. J. Jeffreys and B. S. Jeffreys. *Methods of Mathematical Physics*. Cambridge, Cambridge University Press, 1946.
- [7] P. M. Morse and H. Feshbach. *Methods of Theoretical Physics*, vols 1 and 2. New York, McGraw-Hill, 1953.
- [8] C. Nash and S. Sen. *Topology and Geometry for Physicists*. London, Academic Press, 1983.
- [9] P. Ramond. Field Theory: A Modern Primer. Reading, Mass., Benjamin/Cummings, 1981.
- [10] L. H. Ryder, Quantum Field Theory. Cambridge, Cambridge University Press, 1985.
- [11] S. S. Schweber. *An Introduction to Relativistic Quantum Field Theory*. New York, Harper and Row, 1961.

Preface

- [12] R. F. Streater and A. S. Wightman. *PCT, Spin and Statistics, and All That.* New York, W. A. Benjamin, 1964.
- [13] A. Trautman. Fibre bundles associated with space-time. *Reports on Mathematical Physics*, 1:29–62, 1970.
- [14] C. de Witt-Morette, Y. Choquet-Bruhat and M. Dillard-Bleick. *Analysis, Manifolds and Physics*. Amsterdam, North-Holland, 1977.

Acknowledgements

There are an enormous number of people I would like to express my gratitude to, but I will single out just a few of the most significant. Firstly, my father George Szekeres, who introduced me at an early age to the wonderful world of mathematics and has continued to challenge me throughout my life with his doubts and criticisms of the way physics (particularly quantum theory) is structured. My Ph.D. supervisor Felix Pirani was the first to give me an inkling of the importance of differential geometry in mathematical physics,while others who had an enormous influence on my education and outlook were Roger Penrose, Bob Geroch, Brandon Carter, Andrzej Trautman, Ray McLenaghan, George Ellis, Bert Green, Angas Hurst, Sue Scott, David Wiltshire, David Hartley, Paul Davies, Robin Tucker, Alan Carey, and Michael Eastwood. Finally, my wife Angela has not only been an endless source of encouragement and support, but often applied her much valued critical faculties to my manner of expression. I would also like to pay a special tribute to Patrick Fitzhenry for his invaluable assistance in preparing diagrams and guiding me through some of the nightmare that is today's computer technology.

To my mother, Esther