Cambridge University Press 0521825849 - Well-Posed Linear Systems Olof Staffans Table of Contents More information

Contents

	List of figures	<i>page</i> ix
	Preface	xi
	List of notation	xiv
1	Introduction and overview	1
1.1	Introduction	1
1.2	Overview of chapters 2–13	8
2	Basic properties of well-posed linear systems	28
2.1	Motivation	28
2.2	Definitions and basic properties	34
2.3	Basic examples of well-posed linear systems	46
2.4	Time discretization	55
2.5	The growth bound	60
2.6	Shift realizations	67
2.7	The Lax–Phillips scattering model	71
2.8	The Weiss notation	76
2.9	Comments	78
3	Strongly continuous semigroups	85
3.1	Norm continuous semigroups	85
3.2	The generator of a C_0 semigroup	87
3.3	The spectra of some generators	98
3.4	Which operators are generators?	106
3.5	The dual semigroup	113
3.6	The rigged spaces induced by the generator	122
3.7	Approximations of the semigroup	128
3.8	The nonhomogeneous Cauchy problem	133
3.9	Symbolic calculus and fractional powers	140
3.10	Analytic semigroups and sectorial operators	150

Cambridge University Press 0521825849 - Well-Posed Linear Systems Olof Staffans Table of Contents More information

vi

Contents

3.	11 Sp	pectrum determined growth	164
3.	12 T	he Laplace transform and the frequency domain	169
3.	13 SI	hift semigroups in the frequency domain	177
3.	14 In	wariant subspaces and spectral projections	180
3.	15 C	omments	191
4	Т	he generators of a well-posed linear system	194
4.	1 In	ntroduction	194
4.	2 T	he control operator	196
4.	3 D	offerential representations of the state	202
4.	4 T	he observation operator	213
4.	5 T	he feedthrough operator	219
4.	6 T	he transfer function and the system node	227
4.	7 O	perator nodes	238
4.	8 E	xamples of generators	256
4.	9 D	viagonal and normal systems	260
4.	10 D	becompositions of systems	266
4.	11 C	omments	273
5	С	compatible and regular systems	276
5.	1 C	ompatible systems	276
5.	2 B	oundary control systems	284
5.	3 A	pproximations of the identity in the state space	295
5.	4 E	xtended observation operators	302
5.	5 E	xtended observation/feedthrough operators	313
5.	6 R	egular systems	317
5.	7 E	xamples of regular systems	325
5.	8 C	omments	329
6	Α	nti-causal, dual, and inverted systems	332
6	1 A	nti-causal systems	332
6	2 T	he dual system	337
6	3 Fl	low-inversion	349
6	4 Ti	ime-inversion	368
6	5 Ti	ime-flow-inversion	378
6	6 Pa	artial flow-inversion	386
6	7 C	omments	400
7	F	eedback	403
7.	1 St	tatic output feedback	403
7.	2 A	dditional feedback connections	413
7.	3 St	tate feedback and output injection	422
7.	4 T	he closed-loop generators	425

CAMBRIDGE

Cambridge University Press 0521825849 - Well-Posed Linear Systems Olof Staffans Table of Contents More information

	Contents	vii
7.5	Regularity of the closed-loop system	433
7.6	The dual of the closed-loop system	436
7.7	Examples	436
7.8	Comments	440
8	Stabilization and detection	443
8.1	Stability	443
8.2	Stabilizability and detectability	453
8.3	Coprime fractions and factorizations	465
8.4	Coprime stabilization and detection	473
8.5	Dynamic stabilization	485
8.6	Comments	502
9	Realizations	505
9.1	Minimal realizations	505
9.2	Pseudo-similarity of minimal realizations	511
9.3	Realizations based on factorizations of the Hankel operator	517
9.4	Exact controllability and observability	521
9.5	Normalized and balanced realizations	530
9.6	Resolvent tests for controllability and observability	538
9.7	Modal controllability and observability	546
9.8	Spectral minimality	549
9.9	Controllability and observability of transformed systems	551
9.10	Time domain tests and duality	554
9.11	Comments	565
10	Admissibility	569
10.1	Introduction to admissibility	569
10.2	Admissibility and duality	572
10.3	The Paley–Wiener theorem and H^{∞}	576
10.4	Controllability and observability gramians	583
10.5	Carleson measures	591
10.6	Admissible control and observation operators for diagonal	
	and normal semigroups	598
10.7	Admissible control and observation operators for	
	contraction semigroups	602
10.8	Admissibility results based on the Lax-Phillips model	610
10.9	Comments	613
11	Passive and conservative scattering systems	616
11.1	Passive systems	616
11.2	Energy preserving and conservative systems	628
11.3	Semi-lossless and lossless systems	636

Cambridge University Press 0521825849 - Well-Posed Linear Systems Olof Staffans Table of Contents <u>More information</u>

viii	Contents	
11.4	Isometric and unitary dilations of contraction semigroups	643
11.5	Energy preserving and conservative extensions of	
	passive systems	655
11.6	The universal model of a contraction semigroup	660
11.7	Conservative realizations	670
11.8	Energy preserving and passive realizations	677
11.9	The Spectrum of a conservative system	691
11.10	Comments	692
12	Discrete time systems	696
12.1	Discrete time systems	696
12.2	The internal linear fractional transform	703
12.3	The Cayley and Laguerre transforms	707
12.4	The reciprocal transform	719
12.5	Comments	728
	Appendix	730
A.1	Regulated functions	730
A.2	The positive square root and the polar decomposition	733
A.3	Convolutions	736
A.4	Inversion of block matrices	744

Bibliography	750
Index	767