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1
High energy hadron scattering

In these lectures the theory of complex angular momenta is presented. It
is assumed that readers are familiar with the methods of modern quantum
field theory (QFT). Nevertheless we shall briefly recall its basic principles.

1.1 Basic principles

The main experimental fact underlying the theory is the existence of
strong interactions between particles of non-zero masses. The theory is
constructed for quantities which have a direct physical meaning.

1.1.1 Invariant scattering amplitude and cross section

Such quantities are the scattering amplitudes,

��
��

�������

�������

�
�

�

p1

p2

p′1

p′2

p′3

which are supposed to be functions of the kinematical invariants only:
A(p1, . . . , pn) = A(p2

i , pipk). For simplicity, let us begin by considering
the scattering of neutral, spinless particles as shown in Fig. 1.1. We use
a normalization of the scattering amplitudes such that the kinematical
factors arising from the wave functions of the external particles are fac-
torized out. The cross section of any process can be defined in terms of

8
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Fig. 1.1. Two-particle scattering

the invariant amplitude A as follows:

dσn = (2π)4δ

(
p1 + p2 −

∑
i

p′i

)
|A|2

n∏
i=1

d3p′i
2p′i0(2π)3

1
I
,

I = 4p10p20J = 4
√

(p1p2)2 − m2
1m

2
2 . (1.1)

Here the factor (2π)4δ() originates from energy–momentum conservation,
d3p′i/2p′i0(2π)3 from the phase space volume; I is the Møller factor which
combines the flux density J of the initial particles and (2p10 2p20)−1 com-
ing from their wave functions.

1.1.2 Analyticity and causality

It is assumed that the scattering amplitude A is an analytic function of
its arguments (for instance it cannot contain terms like Θ(pi0)). This
assumption is a manifestation of the causality principle. Without ana-
lyticity, the scattered waves could appear at their source before being
emitted. Additionally, it is natural to conjecture at this point that the
growth of the scattering amplitude, as one of the invariants tends to infin-
ity for fixed values of the remaining invariants, is polynomially bounded,

|A(p1, . . . , pn)| < (pipj)N .

This assumption is closely related to causality and the locality of the
interaction. One needs it in order to write the dispersion representation
for the amplitudes (to be able to close the integration contour over an
infinitely large circle).

1.1.3 Singularities

It is also assumed that all singularities of the amplitude on the physical
sheet have the meaning of reaction thresholds, i.e. they are determined by
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physical masses of the intermediate state particles. In terms of Feynman
diagrams they are the Landau singularities.

1.1.4 Crossing symmetry

We will clarify the meaning of crossing, taking as an example a four-
particle amplitude. Since this amplitude depends on the kinematical in-
variants (and not on the sign of pi0), the same analytic function describes
the reaction

a(p1) + b(p2) → c(p3) + d(p4) for p10, p20, p30, p40 > 0

as well as

a(p1) + c̄(−p3) → b̄(−p2) + d(p4) for p10, p40 > 0, p20, p30 < 0

and

a(p1) + d̄(−p4) → b̄(−p2) + c(p3) for p10, p30 > 0, p20, p40 < 0 .

For an unstable particle, there is the additional reaction a → b̄ + c + d
(p10, p30, p40 > 0, p20 < 0).

In fact, the crossing symmetry implies the CPT -theorem – invariance
of the amplitude A with respect to the combination of charge conjugation
C, space reflection P and time reversal T .

Crossing symmetry follows from the first three assumptions. It can be
shown that the same assumptions allow us to prove the spin-statistics
relation theorem (the Pauli theorem).

1.1.5 The unitarity condition for the scattering matrix

Unitarity has a simple physical meaning: the sum of probabilities of all
processes which are possible at a given energy is equal to unity, SS+ = 1.
If S = 1 + iA, then

i (A − A+) = −AA+.

Representing the amplitude A as the sum of its real and imaginary parts,
A = Re A + i Im A, the unitarity condition takes the form

2 Im A = AA+. (1.2)

1.2 Mandelstam variables for two-particle scattering

Let us show how all the above principles work in the case of the four-
particle amplitude.
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Although the amplitude of the 2 → 2 process depends evidently on two
independent variables, that is the energy of the incoming particles and
the scattering angle, it is more convenient to consider A as a function of
three Mandelstam variables

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2 .

They are related to each other by

s + t + u =
4∑

i=1

m2
i

where the sum runs over the masses of all particles participating in the
collision.

For the sake of simplicity, in what follows we restrict ourselves to the
case of equal particle masses, mi = µ.

The Mandelstam variables have a simple physical meaning. For in-
stance, in the centre-of-mass system (cms) of the reaction a + b → c + d
(the so-called s-channel), s is the square of the total energy of the collid-
ing particles and t = −(p1 −p3)2 is the square of the momentum transfer
from a to c. In the cms of the reaction a + c̄ → b̄ + d (t-channel), t plays
the role of the total energy squared, and s is the square of momentum
transfer. The variables u and t, respectively, play similar rôles in the
u-channel reaction a + d̄ → b̄ + c.

1.2.1 The Mandelstam plane

It is convenient, following Landau, to represent the kinematics of the
three reactions graphically on the Mandelstam plane. We use here the
well known geometrical fact that the sum of the distances from a point
on the plane to the sides of an equilateral triangle does not depend on
the position of the point. Therefore, taking into account the condition
s + t + u = 4µ2, let us measure s, t and u as the distances to the sides of
the triangle.

It is easy then to represent the physical region of any reaction on such
a plane. For instance, the physical region of the reaction a + c̄ → b̄ + d
corresponds to t ≥ 4µ2, s ≤ 0, u ≤ 0 and it is shown on Fig. 1.2 as the
upper shaded area. The physical regions of the other reactions can be
identified in a similar manner.

In the case of the scattering of identical neutral particles the amplitude
in each physical region is the same and it satisfies the unitarity condition
separately in each region.

Examining the Mandelstam plane Fig. 1.2 we notice an interesting fea-
ture: as we move from positive to negative values of s (from the physical
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C2(u, t)

u = 0u = 4µ2

Fig. 1.2. Crossing reactions on the Mandelstam plane

region of the s-channel to the u-channel), the energy dependence of the
scattering amplitude turns into the angular dependence.

1.2.2 Threshold singularities on the Mandelstam plane

Let us discuss now singularities of the amplitude. As an illustration, we
consider elastic scattering of neutral pions: π0 + π0 → π0 + π0. We
will assume that (in accordance with experiment) pions are the lightest
stable hadrons and that there is no bound state of two neutral pions.
Then, the amplitude has no singularities at s < 4µ2. The first threshold
lies at s = (2µ)2. It corresponds to the two-particle intermediate state.
The next, three-particle threshold could have appeared at s = (3µ)2. In
reality, the second threshold in the pion scattering amplitude is situated
at s = (4µ)2 – the four-particle state, since the transition of two pions
into three is forbidden by G-parity conservation.

Similar singularities in energy are known to appear in quantum me-
chanics, for instance the threshold singularity at s → 4µ2.

There is however a principal difference between relativistic and non-
relativistic theories in the interpretation of the singularities in momentum
transfer.

In quantum mechanics such singularities are determined by the poten-



1.3 Partial wave expansion and unitarity 13

tial. For instance, the Yukawa potential

V (r) ∝ exp (−αr)
r

corresponds to a pole of the scattering amplitude in the plane of the
squared momentum transfer k:

A(k2) ∝ 1
k2 + α2

.

In the relativistic theory the rôle of the potential is played by energy
singularities in the t-channel, thresholds at t = 4µ2, 16µ2 and so on.

Let us illustrate this statement by considering the box diagram

t

s

p1

p2

p3

p4

whose contribution we may interpret as defining the potential in the next-
to-Born approximation. It is easy to see that the radius of this potential
is r = 1/2µ.

Thus, the assumption that all the singularities of the scattering am-
plitude are determined by the masses of real particles implies that there
are no potentials with an infinite radius (since all hadrons have non-zero
masses).

1.3 Partial wave expansion and unitarity

In order to obtain more concrete results, we must exploit analyticity and
unitarity of the S-matrix.

Due to conservation of angular momentum, the unitarity condition for
scattering amplitudes with given angular momentum � becomes diagonal.
It is convenient, therefore, to expand the s-channel amplitude into partial
waves:

A(s, t) =
∞∑

�=0

f�(s)(2� + 1)P�(z), (1.3a)
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where P�(z) is the Legendre polynomial and z is the cosine of the scat-
tering angle:

z = cos Θs = 1 +
2t

s − 4µ2
=

u − t

u + t
. (1.3b)

From (1.3b) it becomes obvious that in the physical region of s-channel
(t, u ≤ 0) we have −1 ≤ z ≤ 1, as expected.

Substituting the expansion (1.3a) into (1.2) and using well known or-
thogonality properties of Legendre polynomials, it is straightforward to
derive the unitarity condition for partial amplitudes f�(s). It acquires a
particularly simple form∗

Im f�(s) =
ks

16πωs
f�(s)f∗

� (s) + ∆, (1.4a)

where p and ω stand for cms particle momentum and energy, respectively,

ks =

√
s − 4µ2

2
, ωs =

√
s

2
. (1.4b)

In (1.4a) ∆ represents the contribution of the inelastic channels, ∆ > 0.
The elastic case, ∆ = 0, can be solved explicitly:

f�(s) = i
8π

v

[
1 − e2i δ�(s)

]
, v =

ks

ωs
, (1.5a)

with δl the scattering phase.
The solution of the elastic unitarity condition has the same form as in

non-relativistic quantum mechanics except for the velocity factor v = k/ω
which arises due to relativistic normalization of the amplitude A.

In the general case the solution of (1.4a) can be parametrized with the
help of the ‘elasticity parameter’ η�(s) ≤ 1:

f�(s) = i
8π

v

[
1 − η� · e2i δ�

]
, η2

� = 1 − v

4π
∆. (1.5b)

From (1.5) it follows that partial wave amplitudes are bounded from
above:

Im f� ≤ |f�| ≤ 16π v−1 (η� = 1). (1.6a)

Maximal inelasticity of the scattering in a given partial wave corresponds
to η� = 0. In the high energy limit this leads to the restriction

Im f� ≤ |f�| ≤ 8π (η� = 0). (1.6b)

∗ Actual derivation of the unitarity condition for partial wave amplitudes uses the
relation between the angles of initial, intermediate and final state particles and the
known orthogonality properties of Legendre polynomials.



1.3 Partial wave expansion and unitarity 15

In this case the amplitude (1.5b) is purely imaginary, so that the elastic
scattering is but a ‘shadow’ of inelastic channels. The model

f� =


 i

8π

v
, η� = 0, for � < �0 = ksR,

0 , η� = 1, δ� = 0, for � > �0,

is known as the ‘black disk’ model for diffractive scattering. At high
energies s � 4k2

s � µ2 (v � 1) when �0 � 1, it leads to the forward
scattering amplitude (see (1.3a))

A(s, 0) =
∑

�

(2� + 1)f� � �2
0 · 8πi � i s · 2πR2,

which, according to the optical theorem, results in

σtot =
Im A(s, 0)

v s
� 2πR2 = πR2

∣∣
inelastic

+πR2
∣∣
diffraction

.

This is the pattern of diffraction off an absorbing disk of radius R.

1.3.1 Threshold behaviour of partial wave amplitudes

It is well known from quantum mechanics that for potentials of finite
range, r0, the partial waves behave like (kr0)� as k → 0. It can be easily
seen that a similar result holds in the theory of the S matrix.

Indeed, the singularity in t of the amplitude A(s, t), the closest to the
physical region in the s-channel, is located at t = 4µ2. Therefore the
series (1.3a) should be convergent for z up to z0 = 1 + 4µ2/2k2

s .
For t > 0 and s → 4µ2, one gets z → ∞ and P�(z) grows as P�(z) ∼ z�.

For the series (1.3a) to converge, one has to require that f� should fall
with � like

(
2k2

s/4µ2
)� but not faster since at t = 4µ2 the series has to be

divergent.

1.3.2 Singularities of Im A on the Mandelstam plane (Karplus curve)

Repeating the same arguments for the imaginary part of the s-channel
amplitude ImA we would get

Im f�(s) ∝ k2�
s , ks → 0.

This cannot be true, however, since it contradicts the unitarity condition:
Im f� ∝ k4�+1

s follows from (1.4a). Substituting this behaviour into (1.3a),
we observe that the series for Im sA(s, t) remains convergent at t = µ2.
We conclude that singularities in t of the imaginary part of the amplitude
are located above t = 4µ2, and their position depends on s.
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Actually, using the unitarity condition one can find the exact form of
the line of singularities of Im sA(s, t) on the Mandelstam plane, known as
Karplus (or Landau) curve.

Let us sketch its derivation in the region 4µ2 ≤ s ≤ 16µ2, t > 4µ2

where the two-particle unitarity condition is valid (∆ = 0 in (1.4a)).
For t > 0 we have z > 1 and the Legendre polynomials increase expo-

nentially with �:

P�(cosh α)
�→∞� e(�+ 1

2
)α

√
2π� sinh α

, cosh α ≡ z = 1 +
t

2k2
s

> 1 . (1.7)

To ensure convergence of (1.3a) for t < 4µ2, partial waves have to fall as

f� ∼ e−�α0 , cosh α0 = 1 +
4µ2

2k2
s

. (1.8)

Due to the unitarity condition (1.4a) the imaginary part falls even faster:
Im f� ∼ exp (−2�α0).

Consider now the series (1.3a) for Im sA(s, t). With t increasing, the
growing factor exp (�α), originating from the Legendre polynomials, ev-
entually overtakes the falling factor exp (−2�α0) due to Im f�. At this
point the series becomes divergent, and Im sA(s, t) develops a singularity.

Thus, the line of singularities of Im sA(s, t) for 4µ2 ≤ s ≤ 16µ2 is given
by the equation α = 2α0. In terms of the variables s and t this equation
takes the form

t

16µ2
=

s

s − 4µ2
, 4µ2 ≤ s ≤ 16µ2.

In the complementary region 4µ2 ≤ t ≤ 16µ2, s ≥ 4µ2, the Karplus curve
can be found using the symmetry of A(s, t) under the permutation s ↔ t:

s

16µ2
=

t

t − 4µ2
, 4µ2 ≤ t ≤ 16µ2.

This example illustrates how the unitarity condition determines the ana-
lyticity domain of the scattering amplitude.

The lines of singularities Ci of the amplitude A(s, t) are drawn on the
Mandelstam plane in Fig. 1.2.

The fact that the Karplus curve C1(s, t) has finite asymptotes (in our
example, the lines s = 4µ2, t → ∞, and t = 4µ2, s → ∞) is obvious, since
otherwise the partial wave amplitudes would decrease with increasing �
faster than any exponential, which is in contradiction with the standard
behaviour f� ∼ exp(−α�) for � → ∞.

In reality, the Karplus curves for ππ scattering are not symmetric with
respect to s and t, which is a consequence of the pions being pseudoscalars
(see the following lectures and the footnote on page 27).
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1.4 The Froissart theorem

In 1958 Froissart showed that the analytic properties of the scattering
amplitude together with the unitarity condition put certain restrictions
on the asymptotic behaviour of A(s, t) in the physical region. Let us show
that asymptotically

Im A(s, t)|t=0 ≤ const · s ln2 s

s0
, s → ∞.

First let us estimate f� at large s using the fact that the singularity of
Im sA(s, t) closest to the physical region of the s-channel is situated at
t = 4µ2. As was shown above, at large � the partial wave amplitude falls
exponentially. Since for k2

s ∝ s � t (1.8) gives α � √
t/ks, we have

f�(s) � c(s, �) exp
(
− �

ks

√
4µ2

)
, �, s → ∞, (1.9)

where c(s, �) is slowly (non-exponentially) varying with �.
Let us now assume that for t arbitrarily close to 4µ2 the amplitude

grows with s not faster than some power. Then the same is valid for
Im c(s, �). Indeed, Im fl is positive due to the unitarity condition, and so
is P�(1 + t/2k2

s) for t ≥ 0. Therefore for each partial wave we have an
estimate†(

s

s0

)N

> ImA(s, t) =
∞∑

�=0

Im f�(s)(2� + 1)P�

(
1 +

t

2k2
s

)

> Im c(s, �)
(

2π�

√
t

ks

)−1/2

exp
{

�

ks

(√
t −
√

4µ2
)}

. (1.10)

Since (1.10) holds for arbitrary positive t < 4µ2, we conclude that

Im c(s, �) < (s/s0)
N ,

and finally, modulo an irrelevant pre-exponential factor,

Im f�(s) <∼
(

s

s0

)N

exp
(
−2µ

ks
�

)
. (1.11)

(Using the unitarity condition one can derive a similar estimate for Re f�.)

† the series converges inside the so-called Lehman ellipse in the z plane
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We are now in a position to estimate the imaginary part of the forward
scattering amplitude:

ImA(s, t = 0) =
∞∑

�=0

Im f�(s) (2� + 1)

≤ 8π

L∑
�=0

(2� + 1) +
∞∑

�=L+1

Im f�(s)(2� + 1). (1.12)

Here we have extracted the finite sum � < L in which partial waves are
large, Im f� � |f�| = O(1), and estimated its contribution from above by
substituting for Im f� its maximal value allowed by unitarity, see (1.6b):

L∑
�=0

(2� + 1) � L2 .

The border value of the angular momentum L above which partial wave
amplitudes become small, Im f�>L  1, and fall exponentially with �
according to (1.11) can be found by setting(

s

s0

)N

exp
(
−2µ

ks
L

)
� 1 =⇒ L � ks

2µ
ln

s

s0
.

The contribution of the infinite tail of the series in (1.12) can be estimated
using fL+n ∼ fL exp(−2µn/ks) and turns out to be subdominant:

∞∑
n=0

2(L + n) exp
{
−2µ

ks
n

}
� ks

µ
L +

k2
s

2µ2

s→∞ L2.

Thus,
ImA(s, t = 0) ∝ L2 ∝ s ln2 s

s0
.

This is the Froissart theorem.
The magnitude of the partial wave as a function of � is sketched here:

|f�|

�L
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Since according to the optical theorem ImA(s, t = 0) = sσtot(s), it
follows from the Froissart theorem that the total cross section cannot
grow with the centre of mass energy

√
s faster than the squared logarithm

of s, σtot(s) ≤ σ0 ln2(s/s0), and the interaction radius cannot grow faster
than the logarithm of s.

An analogous consideration, together with the unitarity condition, leads
to the similar inequality for the real part of the forward scattering ampli-
tude, |Re A(s, t = 0)| < const · s ln2(s/s0).

In order for the cross section not to decrease with increasing energy,
the amplitude A(s, t = 0) has to grow and, as a consequence, the number
of partial waves contributing to the sum in (1.3a) has to be large. This
allows us to replace the sum in (1.3a) by the integral over �, using the
well known approximate expression for the Legendre polynomials,

P�(cos Θ) � J0

[
(2� + 1)

Θ
2

]
, � � 1, θ  1. (1.13)

We obtain

A(s, t) �
∫

f�(s)J0

[
(2� + 1)

Θ
2

]
(2� + 1)d�.

It is convenient to replace � by the impact parameter ρ, � + 1/2 = ksρ.
Then, using t � −(ksΘ)2, we obtain

A(s, t) � k2
s

∫
f(ρ, s)J0

(
ρ
√−t

)
2ρ dρ. (1.14)

If the values of ρ giving the dominant contribution to this integral do
not depend on s (which is the case for the usual picture of diffractive
scattering off a finite size object), then it is natural to expect that the
amplitude takes the factorized form A(s, t) � a(s)F (t). If we additionally
assume that the partial wave amplitudes f(ρ, s) that are dominant in
(1.11) approach constant values as s → ∞, then A(s, t) ∼ sF (t) and the
total cross section tends to a constant.

1.5 The Pomeranchuk theorem

In 1958 I.Ya. Pomeranchuk showed that if the total cross sections are
constant at high energies, then the total cross sections of the scattering of
a particle and its antiparticle off the same target should be asymptotically
equal. The derivation of this result is based on the properties of the
scattering amplitude in the s- and u-channels.

Let us identify the singularities of A(s, t = 0) in the complex s plane.
They are the right-hand cut s ≥ 4µ2 and the left-hand cut s ≤ 0. The
latter cut corresponds to the right-hand cut u ≥ 4µ2 in the complex u
plane due to the relation s + t + u = 4µ2.
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s




�

4µ2

a + b → c + d

a + d̄ → c + b̄


 �
�

Fig. 1.3. Amplitudes of two crossing reactions in the complex s plane

It is natural to assume that the amplitude of the reaction a+ b → c+d
is equal to the value A(s, t) on the upper edge of the right cut in s, which
corresponds to the usual definition of Feynman integrals in perturbation
theory:

A(a + b → c + d) → lim
ε→0

A(s + i ε, t).

Similarly, the physical amplitude of the reaction a+ d̄ → c+ b̄ is given by
the value of A on the upper edge of the right-hand cut in u, i.e.

A(a + d̄ → c + b̄) = lim
ε→0

A(u + i ε, t) = lim
ε→0

A(−(s − i ε) − t + 4µ2, t),

where the latter equality follows from the identity s+t+u = 4µ2 together
with crossing symmetry. Thus the physical amplitude of the cross-channel
reaction in the s plane is obtained by approaching the cut s ≤ 0 from
below, as shown in Fig. 1.3. Furthermore, since A(s, t ≤ 0) is real on the
interval 0 < s < 4µ2 which is free from singularities, the values of the
amplitude on the two edges of the cut are complex conjugate. Therefore
we may use the relation A(s − i ε, t < 0) = A∗(s + i ε, t < 0) to finally
arrive at

Aa+d̄→c+b̄(s) � [ Aa+b→c+d(−s) ]∗ , s � −u . (1.15)

Pomeranchuk proved the theorem under the assumption that the elastic
scattering amplitude at large s has the form

Aa+b→a+b = sF (t) , (1.16a)

so that the total cross section tends to a constant at s → ∞. Using the
relation (1.15) we then obtain

Aa+b̄→a+b̄ = −sF ∗(t) , (1.16b)

yielding that the imaginary parts of the two amplitudes are equal whereas
their real parts have opposite signs. (This implies that in such a model the
part of the amplitude that is symmetric in s, u must be purely imaginary
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while the antisymmetric part must be real.) Since the total cross section is
defined by the imaginary part of A, the Pomeranchuk theorem follows suit:

σtot(a + b) = σtot(a + b̄).

If the total cross sections increase with energy, the asymptotic equality
of σab and σab̄ cannot, in general, be proved. The Pomeranchuk theo-
rem, however, can be proved, assuming asymptotic factorization of the
amplitude, A(s, t) � a(s)F (t), for a special class of the energy behaviour,
namely, a(s) = s(ln s)β . To carry out the proof one must use the hypoth-
esis that asymptotically the real part of the amplitude does not exceed
its imaginary part

lim
s→∞

Re A(s, t)
Im A(s, t)

< const. (1.17)

It is supported by the observation that in general Re f� is a sign alternating
function so that destructive interference in the series (1.3a) for ReA(s, t)
is possible. (Here it is important, once again, that at high energies the
large values of � are essential.)

We may illustrate the nature and significance of this hypothesis on a
simple example. Consider an amplitude of the form

A(s, t) = s ln
−s

s0
· c(t)

with c(t) a real function. For s > 0 this amplitude is complex, and the
cross section in the s-channel is constant, whereas at negative s (positive
u) we have Im A = 0 and the u-channel cross section vanishes.

Did we manage to construct a counterexample to the Pomeranchuk
theorem? Obviously not, since our model amplitude is not realistic. It
gives rise to the elastic cross section exceeding the total cross section,

σel ∼
∫

dt

s2
|A(s, t)|2 ∝ ln2 s � σtot ∼ const,

which is a consequence of Re A/ Im A ∼ ln s → ∞, in contradiction
with (1.17).

In this lecture we have demonstrated simple consequences of the ana-
lyticity and crossing symmetry of the scattering amplitude.

In the forthcoming lectures we will show how the t-channel unitarity can
be used to study the asymptotics of the scattering amplitudes for s → ∞.
It is singularities of the amplitude in t (rather than those in u) that are
located close to the physical region in the s-channel on the Mandelstam
plane. This explains why the physics of the t-channel is important for
large s.




