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I

Introduction: a role for history

To speak informatively about bakery you have got to have put your
hands in the dough. (Diderot, Oeuvres Politigues)

The history of mathematics, lacking the guidance of philosophy, has
become blind, while the philosophy of mathematics, turning its back
on the most intriguing phenomena in the history of mathematics, has
become empty. (Lakatos, Proofs and Refutations)

I.I REAL MATHEMATICS

To allay any concerns for my mental health which the reader may be feeling
if they have come to understand from the book’s title that I believe math-
ematics based on the real numbers deserves singling out for philosophical
treatment, let me reassure them that I mean no such thing. Indeed, the
glorious construction of complex analysis in the nineteenth century is a
paradigmatic example of what ‘real mathematics’ refers to.

The quickest way to approach what I do intend by such a title is to
explain how I happened upon it. Several years ago I had been invited
to talk to a philosophy of physics group in Cambridge and was looking
for a striking title for my paper where I was arguing that philosophers of
mathematics should pay much closer attention to the way mathematicians
do their research. Earlier, as an impecunious doctoral student, I had been
employed by a tutorial college to teach eighteen-year-olds the art of jumping
through the hoops of the mathematics ‘A’ level examination. After the latest
changes to the course ordained by our examining board, which included
the removal of all traces of the complex numbers, my colleagues and I
were bemoaning the reduction in the breadth and depth of worthwhile
content on the syllabus. We started playing with the idea that we needed
a campaign for the teaching of real mathematics. For the non-British and
those with no interest in beer, the allusion here is to the Campaign for Real
Ale (CAMRA), a movement dedicated to maintaining traditional brewing
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2 A Philosophy of Real Mathematics

techniques in the face of inundation by tasteless, fizzy beers marketed by
powerful industrial-scale breweries. From there it was but a small step to
the idea that what I wanted was a Campaign for the Philosophy of Real
Mathematics. Having proposed this as a title for my talk, it was sensibly
suggested to me that I should moderate its provocative tone, and hence the
present version.

It is generally an indication of a delusional state to believe without
first checking that you are the first to an expression. The case of ‘real
mathematics’ would have proved no exception. In the nineteenth century
Kronecker spoke of ‘die wirkliche Mathematik’ to distinguish his algorith-
mic style of mathematics from Dedekind’s postulation of infinite collec-
tions. But we may also find instances which stand in need of no translation.

Listen to G. H. Hardy in A Mathematicians Apology:

It is undeniable that a good deal of elementary mathematics — and I use the word
‘elementary’ in the sense in which professional mathematicians use it, in which
it includes, for example, a fair working knowledge of the differential and integral
calculus — has considerable practical utility. These parts of mathematics are, on the
whole, rather dull; they are just the parts which have the least aesthetic value. The
‘real’ mathematics of the ‘real’ mathematicians, the mathematics of Fermat and
Euler and Gauss and Abel and Riemann, is almost wholly ‘useless’ (and this is as
true of ‘applied’ as of ‘pure’ mathematics). It is not possible to justify the life of
any genuine professional mathematician on the ground of the ‘utility’ of his work.
(Hardy 1940: 59—60)

Overlooking his caveat (1940: 72), many have enjoyed reproducing this
quotation to point out Hardy’s error, that the mathematics of Fermat and
Euler and Gauss and Abel and Riemann has turned out to be extremely
useful, for esoteric physical theories such as string theory, but also more
practically for the encryption systems which we trust keep our financial
dealings secure. But this is not my concern here. I wish rather to pay
attention to Hardy’s use of ‘real’. Elsewhere he talks in a similar vein of
pieces of mathematics being ‘important’ and even ‘serious’. I have dropped
his scare quotes. It is hard to see that they can achieve very much in our
times.

Hardy is being extremely exacting here on mathematicians who want to
join the real mathematicians’ club. I think we can afford to be considerably
more generous. Where second-rate mathematicians are given short shrift
by Hardy, I am willing to give even computers a fair hearing, and, although
I shall not be speaking of them, people employing ‘dull’ calculus are not to
be excluded. But that having been said, Fermat and Euler and Gauss and
Abel and Riemann, along with Hilbert and Weyl and von Neumann and
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Grothendieck, are right there at the core of what I am taking to be real
mathematicians.

What then of the philosophy of real mathematics? The intention of this
term is to draw a line between work informed by the concerns of mathemati-
cians past and present and that done on the basis of at best token contact
with its history or practice. For example, having learned that contemporary
mathematicians can be said to be dealing with structures, your writing on
structuralism without any understanding of the range of kinds of structure
they study does not constitute for me philosophy of real mathematics. But,
then, how exacting am 7 being?

I.2 THE CURRENT STATE OF PLAY

Ian Hacking opens his book Representing and Intervening with a quotation
from Nietzsche’s The Twilight of the 1dols:

You ask me, which of the philosophers’ traits are idiosyncracies?

For example: their lack of historical sense, their hatred of becoming, their
Egypticism. They think that they show their respect for a subject when they
dehistoricize it — when they turn it into a mummy.

He then continues: ‘Philosophers long made a mummy of science. When
they finally unwrapped the cadaver and saw the remnants of an historical
process of becoming and discovering, they created for themselves a crisis of
rationality. That happened around 1960’ (Hacking 1983: 1).

If this portrayal of mid-twentieth century philosophy of science strikes
a chord with you, you may well then ask yourself whether mathematics
was faring similarly at the hands of philosophers at that time. Hacking’s
reference to the year 1960 alludes, of course, to the rise within philosophy
of science of a movement which took the history of science as a vital fount
of information, epitomised by Kuhn’s The Structure of Scientific Revolutions
(Kuhn 1962). Imre Lakatos, with his motto ‘Philosophy of science with-
out history of science is empty; history of science without philosophy of
science is blind’ (1978a: 102), made his own distinctive contribution to
this movement. And yet, as the second epigraph of this chapter suggests,
we should remember that the rationalist theory of scientific methodol-
ogy he proposed and developed in the late 1960s and early 1970s derived
from ideas developed in his earlier mathematical text Proofs and Refutations,
which had appeared as a series of journal articles at around the same time
as Kuhn’s Structure. There we find sharp criticisms of a process similar to
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mummification, the treatment of an evolving body of knowledge as lifeless,
levelled now at formalist and logicist philosophers and mathematicians:

Nobody will doubt that some problems about a mathematical theory can only be
approached after it has been formalised, just as some problems about human beings
(say concerning their anatomy) can only be approached after their death. But few
will infer from this that human beings are ‘suitable for scientific investigation’
only when they are ‘presented in “dead” form’, and that biological investigations
are confined in consequence to the discussion of dead human beings — although,
I should not be surprised if some enthusiastic pupil of Vesalius in those glory
days of early anatomy, when the powerful new method of dissection emerged, had
identified biology with the analysis of dead bodies. (Lakatos 1976: 3n.)

Someone working closer to the ‘glory days’ of early logical reductionism
was Ludwig Wittgenstein. Employing imagery similar to that of Hacking
and Lakatos, he writes of Russell’s logicist analysis of mathematics, “The
Russellian signs veil the important forms of proof as it were to the point of
unrecognizability, as when a human form is wrapped up in a lot of cloth’
(Wittgenstein 1978: 162, remark III-25). But Lakatos went further than
Wittgenstein in reporting to us what lay under the cloth. He exposed much
more of the physiology of the mathematical life-form. So did his revelations
led to a parallel ‘crisis of rationality’ in the philosophy of mathematics?

To provide us with the means to gauge the situation, let us briefly sketch
the current state of a central branch of philosophy of science — the phi-
losophy of physics. Now, the first thing one notices here is the extensive
treatment of recent and contemporary developments. Consider, for in-
stance, the volume — Physics meets Philosophy at the Planck Scale (Callender
and Huggett 2001). As this striking title suggests, philosophers of physics
may interest themselves in specific areas at the forefront of physics research
and yet still ask palpably philosophical questions about time, space and cau-
sation. By contrast, elsewhere one finds less specific, more allusive, studies
of the way research is conducted. For instance, a book such as Models as
Mediators (Morgan and Morrison 1999) analyses the use of models over
a wide range of physics as a part of the general programme of descriptive
epistemology. Issues here are ones just about every physicist has to deal with,
not just those striving to read the mind of God. So, on the one hand, we
have philosophical and historical analysis of particular physical theories and
practices, while, on the other, we have broader treatments of metaphysical
and epistemological concerns, grounded on detailed accounts of physicists’
activities. There is a creative interaction between these two strands, both of
which are supported by the study of physical theories, instrumentation and
experimental methodologies of earlier times, and there is even a specialist
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journal — Studies in History and Philosophy of Modern Physics — devoted to
physics after the mid-nineteenth century.

Now, certainly one can point to dissension in practitioners” visions of
what philosophy of physics activity should be like. Indeed, one can con-
strue passages of Cartwright's The Dappled World (19994, see, e.g., pp. 4—5)
as a call for a philosophy of real physics. Nevertheless, there is a strong com-
mon belief that one should not stray too far from past and present prac-
tice. How different things are in the philosophy of mathematics. While
there is a considerable amount of interest in the ways mathematicians
have reasoned, this is principally the case for the nineteenth century and
earlier and is usually designated as Aistory. By far the larger part of activ-
ity in what goes by the name philosophy of mathematics is dead to what
mathematicians think and have thought, aside from an unbalanced in-
terest in the foundational’ ideas of the 1880-1930 period, yielding too
often a distorted picture of that time. Among the very few single-authored
works on philosophy of recent mathematics, perhaps the most prominent
has been Penelope Maddy’s (1997) Naturalism in Mathematics, a detailed
means—end analysis of contemporary set theory. We shall return to Maddy’s
work in chapter 8, simply noting for the moment that its subject matter
belongs to ‘foundational’ mathematics, and as such displays a tendency
among practice-oriented philosophers not to stray into what we might
call ‘mainstream’ mathematics. This tendency is evident in those chapters
of Revolutions in Mathematics (Gillies 1992) which address the twentieth
century.

The differential treatment of mathematics and physics is the result of
fairly widely held beliefs current among philosophers to the effect that the
study of recent mainstream mathematics is unnecessary and that studies of
pre-foundational crisis mathematics are merely the historical chronicling of
ideas awaiting rigorous grounding. Now, there are two ways to try to coun-
teract such notions. First, one just goes ahead and carries out philosophical
studies of the mainstream mathematics of the past seventy years. Second,
one tries to confront these erroneous beliefs head on. Those who prefer
the first strategy may wish to skip the next section, but anyone looking
for ways to support the philosophical study of real mathematics may profit
from reading it.

I.3 THE FOUNDATIONALIST FILTER

Various versions of the thought that it is right that mathematics and physics
be given this very uneven treatment because of inherent differences between
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the disciplines have been expressed to me on several occasions when I have

been proposing that philosophers could find plenty of material to mull

over in post-1930 mainstream mathematics (algebraic topology, differential
geometry, functional analysis, analytic number theory, graph theory, . . .).

They have taken two forms:

(1) Mathematics differs from physics because of the retention through
the centuries of true statements. While scientific theories are continu-
ally modified and overthrown, many true results of Euclidean geome-
try were correctly established over 2,000 years ago, and mankind has
known arithmetic truths much longer even than this. Thus, contem-
porary mathematics possesses no philosophically significant feature to
distinguish it from older mathematics, especially when the latter has
been recast according to early twentieth-century standards of rigour.
Arithmetic and its applications will provide sufficiently rich material
to think through most questions in philosophy of mathematics. And
even if one wished to take a Lakatosian line by analysing the production
of mathematical knowledge and the dialectical evolution of concepts,
there is no need to pick case studies from very recent times, since they
will not differ qualitatively from earlier ones, but will be much harder
to grasp.

(2) The mathematics relevant to foundational questions, which is all that
need concern philosophers, was devised largely before 1930, and that
which came later did not occur in mainstream branches of mathematics
but in the foundational branches of set theory, proof theory, model
theory and recursion theory. Physics, meanwhile, is still resolving its
foundational issues: time, space, causality, etc.

As to point (1), I freely admit that I stand in awe of the Babylonian
mathematical culture which could dream up the problem of finding the
side of a square field given that eleven times its area added to seven times
its side amounts to 6, units. Their method of solution is translatable as
the calculation of what we would write

WIG/2D* + 16"/ )] = (7/2)} /1 =1/2,

suggesting that quadratics were solved 4,000 years ago in a very similar
fashion to the way we teach our teenagers today. But, from the perspec-
tive of modern algebra and the contemporary study of algorithms, think
how differently we interpret this calculation of the positive solution of
a quadratic equation. As for the geometry of the Greeks, again it goes
without saying an extraordinary achievement, but out of it there emerged a
discipline which has undergone drastic reinterpretations over the centuries.
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Today, one way mathematicians view Euclid’s Elements is the study of a
case of n-dimensional Euclidean geometry, the properties of the princi-
ple bundle # — G — G/H, where G is the Lie group of rigid motions
of Euclidean 7 space, H is the subgroup of G fixing a point designated
as the origin, and G /H is the left coset space. From being the geome-
try of the space we inhabit, it has now become just one particular species
of geometry alongside non-Euclidean geometries, Riemannian geometries,
Cartan geometries and, in recent decades, non-commutative and quantum
geometries. Euclidean space now not only has to vie for our attention with
hyperbolic space and Minkowski space, but also with g-Euclidean space.
What distinguishes mathematical transformations or revolutions from their
scientific counterparts is the more explicit preservation of features of earlier
theories, but, as several contributors to Gillies (1992) have shown, they sur-
vive in a radically reinterpreted form. There are meaningful questions we
can ask about Euclidean geometry which could not have been posed in the
time of Riemann or even of Hilbert, and which would have made no sense
at all to Euclid. For example, does two-dimensional Euclidean geometry
emerge as the large-scale limit of a quantum geometry? The fact that we
are able to ask this question today demonstrates that the relevant constel-
lation of absolute presuppositions, scene of inquiry, disciplinary matrix, or
however you wish to phrase it, has simply changed.

Moreover, to the extent that we wish to emulate Lakatos and represent
the discipline of mathematics as the growth of a form of knowledge, we
are duty bound to study the means of production throughout its history.
There is sufficient variation in these means to warrant the study of con-
temporary forms. The quaint hand-crafted tools used to probe the Euler
conjecture in the early part of the nineteenth century studied by Lakatos
in Proofs and Refutations have been supplanted by the industrial-scale ma-
chinery of algebraic topology developed since the 1930s. And we find that
computer algebra systems are permitting new ways of doing mathematics,
as may automated theorem provers in the future. No economist would dare
to suggest that there is nothing to learn from the evolution of industrial
practices right up to the present, and neither should we.

An adequate response to (2) must be lengthier since it arises out of core
philosophical conceptions of contemporary analytic philosophy. In the re-
mainder of this section I shall sketch out some ideas of how to address it,
but, in some sense or other, the whole book aims to tempt the reader away
from such ways of thinking. Straight away, from simple inductive con-
siderations, it should strike us as implausible that mathematicians dealing
with number, function and space have produced nothing of philosophical
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significance in the past seventy years in view of their record over the pre-
vious three centuries. Implausible, that is, unless by some extraordinary
event in the history of philosophy a way had been found to filzer, so to
speak, the findings of mathematicians working in core areas, so that even
the transformations brought about by the development of category the-
ory, which surfaced explicitly in 1940s algebraic topology, or the rise of
non-commutative geometry over the past seventy years, are not deemed
to merit philosophical attention. This idea of a ‘filter’ is precisely what is
fundamental to all forms of neo-logicism. But it is an unhappy idea. Not
only does the foundationalist filter fail to detect the pulse of contemporary
mathematics, it also screens off the past to us as not-yet-achieved. Our job is
to dismantle it, in the process demonstrating that philosophers, historians
and sociologists working on pre-1900 mathematics are contributing to our
understanding of mathematical thought, rather than acting as chroniclers
of proto-rigorous mathematics.

Frege has, of course, long been taken as central to the construction of
this foundationalist filter, but over the past few years new voices have been
heard among the ranks of scholars of his work. Recent reappraisals of his
writings, most notably those of Tappenden, have situated him as a bona fide
member of the late nineteenth-century German mathematical community.
As is revealed by the intellectual debt he incurred to Riemann, Dedekind
and others, his concern was with the development of a foundational sys-
tem intimately tied to research in central mathematical theories of the day.
In this respect his writings are of a piece with the philosophical work of
mathematicians such as Hilbert, Brouwer and Weyl. By contrast, in more
recent times philosophers have typically chosen to examine and modify
systems in which all, or the vast majority, of mathematics may be said to be
represented, but without any real interest for possible ways in which distinc-
tions suggested by their systems could relate to the architectural structure
of the mainstream. Even distinctions such as finitary/infinitary, predica-
tive/impredicative, below/above some point in the set theoretic hierarchy,
constructive/non-constructive have lost much of their salience, the latter
perhaps less so than the others." How much less relevant to mathematics
are the ideas of fictionalism or modalism.

A series of important articles by Tappenden (see, for example, his 1995)
provides the best hope at present of bringing about a Geszalt switch in the

' This is largely through the reinterpretation of constructiveness by those working in computer science,
but also through the desire of mathematicians to be more informative, as when a constructive proof
of a result in algebraic geometry permits it to be applied to a parameterised family of entities rather
than a single one. Both kinds of reinterpretation are well described by category theory.
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way Frege is perceived by the philosophy community, thereby weakening
the legitimising role he plays for the activity of many philosophers of math-
ematics. Frege should now be seen not merely as a logical reductionist, but
as someone who believed his logical calculus, the Begriffsschrift, to be a
device powerful enough to discern the truth about what concepts, such
as number, are really like, sharp enough to ‘carve conceptual reality at the
joints’ (Tappenden 1995: 449). With considerable justification Tappenden
can say:

The picture of Frege which emerges contains a moral for current philosophical
study of mathematics. We appear to have arrived at a stultifyingly narrow view of
the scope and objectives of foundations of mathematics, a view we read back into
Frege as if it could not but be Frege’s own. (Tappenden 1995: 427)

For the moment, however, I choose to take a closer look at a similar
reinterpretation of Frege appearing in an article written by Mark Wilson
(1999), since it reveals clearly, although not altogether intentionally, the
fault lines running through contemporary philosophy of mathematics. To
prepare ourselves to draw some morals for our discipline from his exercise
in the methodological exegesis of a hallowed ancestor it will help us to
conceive of contemporary research activity in philosophy of mathematics
in terms of a Wittgensteinian family resemblance. From this perspective,
Wilson is aware that he is putting into question the right of a prominent
clan, which includes the Neo-Fregeans, to claim exclusive rights to the
patrimony of a noble forefather. Indeed, he writes ‘T doubt that we should
credit any Fregean authority to the less constrained ontological suggestions
of a Crispin Wright' (Wilson 1999: 257). As someone who identifies with
this clan (‘our Frege’), he naturally finds this result unwelcome. He then
continues by introducing his next paragraph as a ‘happier side to our story’,
which oddly he concludes by indicating, in effect, that another clan — the
category theorists — may now be in a stronger position to stake their claim
to be seen as Frege’s legatees. Interpreting this in my genealogical terms,
we might say that some new shared family traits have been discovered.
Just like Frege, the category theorist is interested in the organisation of
basic mathematical ideas and looks to current ‘mainstream’ research for
inspiration. In the case of Frege it was, according to Wilson, vow Staudt’s
geometry and Dedekind’s number theory,” while in the case of the category
theorists, algebraic topology and algebraic geometry have provided much
of the impetus.

* Currently, the best piece on Frege’s mathematical milieu is Tappenden’s unpublished ‘A Reassessment
of the Mathematical Roots of Frege’s Logicism I: The Riemannian Context of Frege’s Foundations’.
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We should also note, however, that Wilson’s interest in the method-
ological resources available to Frege and his awareness of their continued
usage into more recent times is indicative of the work of yet another clan
within philosophy of mathematics, the practice-oriented philosophers, or
what I am calling philosophers of real mathematics. Continuing Lakatos’s
approach, researchers here believe that a philosophy of mathematics should
concern itself with what leading mathematicians of their day have achieved,
how their styles of reasoning evolve, how they justify the course along
which they steer their programmes, what constitute obstacles to these pro-
grammes, how they come to view a domain as worthy of study and how
their ideas shape and are shaped by the concerns of physicists and other
scientists. Wilson, allied with one clan, has conducted some research in the
style of a second clan, whose effect is a reduction in the legitimisation of
the activities of the first clan in favour of those of a third clan.

There are traits suggesting considerable kinship between the latter two
clans, the philosophers of real mathematics and the category theorists, an
obvious reason for which being that category theory is used extensively
in contemporary practice. Thus, the boundary between them is not at
all sharp. Tappenden in his (1995) effectively casts Frege as a precursor
of the former approach, but interestingly gives an example (p. 452) using
category theory to illustrate how a mathematical property can be said to be
mathematically valuable.

The rise of category theory will most likely be treated in different ways by
the two clans: on the one hand, as the appearance, or the beginnings of the
appearance, of a new foundational language; on the other hand, as an indi-
cation that mathematics never stops evolving even at its most fundamental
level. In the broader context of general philosophy, the category theorist
may also be led to find further roles for category theory within philosophy,
for instance, to think category theory semantics should replace Tarskian
set theoretic semantics in the philosophy of language (see Macnamara and
Reyes 1994 and Jackendoff ez 4/. 1999).

I.4 NEW DEBATES FOR THE PHILOSOPHY OF MATHEMATICS

Even were they to lose the endorsement of Frege, neo-logicist philosophers
of mathematics could still claim that they are acting in accordance with
current conceptions of philosophy. After all, they typically start out from
the same or similar philosophical questions as those asked in philosophy of
science — How should we talk about mathematical truth? Do mathematical
terms or statements refer? If so, what are the referents and how do we have
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access to them? It just so happens, they can claim, that these questions do not
lead on to further questions relevant to what takes place in mathematics
departments. Where the realist beliefs of a philosopher of physics may
dictate that she holds that electrons exist, but lines of magnetic force do
not, or those of a philosopher of psychology that the Freudian unconscious
exists, but IQ does not, mathematics treats things made of the same stuff —
sets, extensions of concepts, possible constructions, fictions or whatever — so
the philosopher of mathematics cannot make similar kinds of distinction.

If we pause to think about this, however, should we not consider it a
little strange that whatever our ‘ontological commitments’ — a notion so
central to contemporary English-language philosophy — vis-d-vis mathe-
matics they can play no role in distinguishing between entities that receive
large amounts of attention, Hopf algebras, say (see appendix), and some
arbitrarily cooked up algebraic entities. If I define a snook to be a set with
three binary, one tertiary and a couple of quatenary operations, satisfying
this, that and the other equation, I may be able to demonstrate with unob-
jectionable logic that all finite snooks possess a certain property, and then
proceed to develop snook theory right up to noetherian centralizing snook
extensions. But, unless I am extraordinarily fortunate and find powerful
links to other areas of mathematics, mathematicians will not think my work
worth a jot. By contrast, my articles may well be in demand if I contribute
to the understanding of Hopf algebras, perhaps via noetherian centralizing
Hopf algebra extensions.

Surely, the philosopher ought to be able tell us something about the pre-
suppositions operating in the mathematical community today which would
account for this difference. Resorting to the property of having been used
in the natural sciences will not do, since there are plenty of entities deemed
crucial for the life of mathematics that have found no direct applications.
On the other hand, it is hard to see how the property of being deemed thus
crucial can be salient to dominant philosophical modes of thinking. For
this, questions of conceptual meaning and shared understanding would
have to come to centre stage. The Hopf algebra concept possesses a cluster
of interrelated meanings, one of which allows for descriptions of interaction
between processes of composition and decomposition in many situations.
These meanings are implicated in the uses to which Hopf algebras are put.

Returning to the philosophy of science, is it the issue of realism as op-
posed to instrumentalism — whether we should think of unobservable the-
oretical entities as really existing — which can be said to relate to the most
penetrating analyses of how the natural sciences work? One recent endeav-
our to escape the realist/instrumentalist impasse in the philosophy of science
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is structural realism, the thesis that science is uncovering only the mathe-
matical structure inherent in the world. But the move to structural realism
does not free us from having to make a stark choice as to whether math-
ematical entities exist or not. Indeed, the choice for the ‘ontic’ structural
realist (see Ladyman 1998) lies between, on the one hand, some mathemat-
ical structures existing as actualised in the universe and, on the other, all
mathematical structures existing, the ones we self-conscious human struc-
tures encounter being deemed physical. Now, at least, mathematicians may
be said to be studying something real, rather than merely creating fictions,
but still we gain no sense of mathematical thinking as part of mathematical
practice. We may have been led to use specific Hopf algebras to allow us
to perform calculations with Feynman diagrams (Kreimer 2000), but it
cannot be right to say that they are structures instantiated in the world.
Still we cannot distinguish between snooks and Hopf algebras.

An attempt to encourage the reorientation of philosophy of science to-
wards debates better grounded in scientific practice has been made by Ian
Hacking (1999). These debates are fuelled by the work emerging from sci-
ence studies and sociology of scientific knowledge, which for him are ‘where
the action has been in the philosophy of science over the past few years’
(Hacking 1999: 186). The first of the ‘sticking points’ on which the de-
bates depend is related to structural realism, although without its physical
foundationalism. Hacking points to an older sense of realism — the thesis
that opposes nominalism — and because of the baggage associated with the
term realism, he opts for the expression inherent-structurism (1999: 83), the
position that the ‘world may, of its own nature, be structured in the ways
in which we describe it’. To understand what is at stake here we don’t have
to turn to esoteric physical theories, but rather may think through the issue
by way of a question such as: To what extent is it the case that the world
is structured of its own nature in such a way that it is correct to designate
as ‘swans’ those black feathered things swimming on the Swan River in
Perth, Australia, and those white feathered things swimming on the River
Thames in England? Note that this is not an all or nothing kind of question.
Answers will invoke ideas from anatomy, physiology, genetics, evolutionary
theory, the history of ornithology, the history of colonial science, etc.

Could a parallel move work for mathematics? At first glance it might
not look promising. How can we talk of a mathematical ‘nature’ possessing
joints to carve? But this, in essence, is how many mathematicians do talk.
Rather than anything contained within the doctrine currently referred to as
‘Platonism’, the sense they have is that something much stronger than logic
offers resistance to their efforts, and that when they view matters ‘correctly’
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things fit into place. Whereas Hopf algebra theory is an established part
of real mathematics, snook theory is not, they would say, because it is
not the result of carving ‘conceptual reality’” at the joints. This notion of
conceptual reality is independent of how we might describe the nature of
the stuff talked about by mathematics. It could inhabit Plato’s heaven or
it could be what results from the process of postulating rules or it could
concern operations, actual or idealised, that we can perform on the physical
world.}

Lakatos is aiming at Hacking’s nominalist-inherent structurist distinc-
tion when he maintains that:

As far as naive classification is concerned, nominalists are close to the truth when
claiming that the only thing that polyhedra have in common is their name. But
after a few centuries of proofs and refutations, as the theory of polyhedra develops,
and theoretical classification replaces naive classification, the balance changes in
favour of the realist. (Lakatos 1976: 92n.)

For Lakatos, if human inquiry allows the dialectical play of ideas to oc-
cur with sufficiently little interference, it will eventually arrive at the right
concepts. In this respect, vast tracts of logically sound, but uncritically
generated, mathematics should be cast out as worthless. In response, the
nominalist might say that there is nothing which intrinsically determines
whether mathematical concepts have been produced correctly. What pro-
vides resistance to the mathematician are the conventions operating in her
community brought about by the contingencies of history. And so we arrive
at a sticking point. Out of this disagreement it might be hoped that the
production of a rich picture of mathematical thinking will ensue.

Let us continue with the other two ‘sticking points’ Hacking sees at the
heart of the science wars. These concern the inevitability or contingency of
the science we have, and whether external or internal explanations should be
given for the stability of our knowledge. What I find attractive about these
questions is the possibility to escape polarised answers. Indeed, Hacking
amusingly suggests that one locate oneself on a scale from 1 to 5. These
ratings are presented in absolute terms as though we have to give a single
answer to, say, how likely we reckon it is for specific scientific developments
to have occurred. It seems to me more reasonable to take it as a measure of
the tendency within one to take a certain side in a series of arguments. We all
know of colleagues who tend to take up more contingentist or necessitarian
views than ourselves on just about any question.

3 These last two are, of course, distinguishable: you can physically move a knight forward one square,
but the rules of chess do not allow you to do so.
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Each of these additional sticking points is relevant to mathematics in the
sense that we may argue about the following kinds of question: Is it the case
that had a successful mathematical discipline been developed to a level of
sophistication comparable to our own, then it would have to involve some-
thing equivalent to X, where for X we may substitute the natural numbers,
the rationals, the complex numbers, complex analysis, Riemann surfaces,
finite groups, Lie groups, Hopf algebras, braided monoidal bicategories,
etc.? Why do we still adhere to, and teach undergraduates about, certain
ways of thinking of X?4

We can find examples of these debates already happening. Indeed, on
the question of contingency, Lakatos and Bloor use the same material,
Lakatos’s case study of the Euler conjecture from Proofs and Refutations, to
argue different sides. Lakatos tells us that:

any mathematician, if he has talent, spark, genius, communicates with, feels the
sweep of, and obeys this dialectic of ideas. (Lakatos 1976: 146)

While for Bloor:

Lakatos’s discussion of Euler’s theorem . . . shows that people are not governed by
their ideas or concepts . . . it is people who govern ideas not ideas which control
people. (Bloor 1976: 155)

Now, to Hacking’s trio of sticking points I would like to add two more.
First, there is the issue of the unity or connectivity of mathematics. This
is nothing to do with all mathematical entities being seen as constructible
within set theory, but much to do with cases of unexpected discovery
such as finding that when using Hopf algebras to calculate expansions
in perturbative quantum field theory, answers depend on values of the
Riemann zeta function. There is an inclination to rebel against such a story
and so to latch on to an image of mathematics as thoroughly fragmented as
Mehrtens (1990) chooses to do, but then we need explanations of cases of
surprising connectivity. For instance, how is it that a geometry devised after
a failed reductio ad absurdum argument, starting out from the negation of
Euclid’s fifth postulate, could provide a useful classifier in knot theory in
that it allows for the measurement of the volume of the hyperbolic space
that typically remains when a knot is removed from the space in which
it sits? For those who admit a considerable degree of unity, the further

4 For an attempt to answer the question “What kind of combination between the “natural” and the
historically contingent led to our conception of modern logic?” by arguing that first-order logic is
‘no natural unity’ see Ferreirés (2001).
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question arises of its causes: social pressures to keep to certain ways of
thinking, the way our brains work, or encounters with inherent structure.

Second, there is the issue of the explicability of the applicability of math-
ematics. Usually this is polarised into ‘it’s an inexplicable miracle how
mathematics, developed for aesthetic reasons, applies to the world” posi-
tion opposed to one asserting ‘it’s not surprising because mathematics has
been thoroughly shaped by the concerns of physicists’. Think how much
more we might learn from a debate between, on the one hand, someone at
point 3 on the scale, who recognises mathematics as arising from what the
world allows us to do it, and who knows how intricately linked mathemat-
ics and physics were in the nineteenth century, but who still thinks there
is something to explain about how Riemannian geometry was there for
Einstein, and on the other hand, someone at point 4 who reckons in addi-
tion that physicists configure their theories to allow for the use of available
mathematics. Mark Steiner (1998) has provided a start for us, but there are
many more subtleties to discover. Just read a mathematician on the subject
to feel the contemporary richness of this issue (e.g. Klainerman 2000).

These debates are not just about getting our description of mathematical
practice right, but bear on ideas about how things ought to be. Just as there
is a normative element to Lakatos’s remarks about realism — we ought to
follow his methodology to arrive at ‘real’ classifications, with the suggestion
that we may, and indeed often do, fail to do so —so each of the other sticking
points can be made to bear some normative load. For instance, we hear that
mathematics may be fragmented today, but along with physics, it could and
should be unified by adopting the language of geometric calculus (Hestenes
1986).

These kinds of questioning are to be addressed by an understanding
of mathematical knowledge as historically situated rather than timeless.
Lakatos understood this, but his work was only a start. To move on we
shall need a revolution of sorts. In the 1960s Kuhn was able to revolu-
tionise the philosophy of science partly because there was already a con-
siderable body of history and sociology of science in existence, the product
of professionalised disciplines. Philosophy of physics was already a much
larger affair than its mathematical counterpart, with ahistoricist philoso-
phers well grounded in mainstream theories and experiments connected
with general relativity and quantum mechanics. We should remember, for
instance, that Reichenbach worked for a time with Einstein. On the other
hand, the logicism expounded by Reichenbach, Hempel and others of that
generation was too deeply ingrained in the philosophical psyche to be over-
come easily. By the 1960s, there was no philosophical tradition requiring
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extensive mathematical knowledge, and the history of modern mathematics
was still largely an amateur affair stuck at the stage of ‘Men of Mathematics’,
and so the conditions were not right for Proofs and Refutations to have its
effect.

Forty years on, few philosophers of mathematics have been prompted
to gain anything approaching the level of historical and theoretical knowl-
edge that philosophers of natural science are expected to have. This is
partly owing to the state of the history of mathematics. We still have noth-
ing to compare with the sophistication of contemporary history of modern
physics, the history of twentieth-century mathematics remaining largely
the preserve of mathematicians. But these factors would be of little impor-
tance were the philosophical agenda to require serious engagement with
the thinking of mathematicians through the ages.

How radical a change is required? It often seems that anyone wishing
to take the history of a science seriously in their philosophy requires what
to many in the English-speaking world of philosophy is an unorthodox
philosophical background. This Lakatos certainly had. For Kuhn, on the
other hand, it was implicitly fed to him via the historians he studied, Koyr¢,
etc.:

the early models of the sort of history that has so influenced me and my historical
colleagues is the product of a post-Kantian European tradition which I and my
philosophical colleagues continue to find opaque. Increasingly, I suspect that anyone
who believes history may have a deep philosophical import will have to learn to
bridge the longstanding divide between the Continental and English-language
philosophical traditions. (Kuhn 1977: xv)

Without the resources of a dialectical philosophy, Kuhn came unstuck. In
the rigid epistemological framework he inherited from the logical empiri-
cists, sameness and difference were polarised, a concept could not evolve
into another while retaining something of its past. And so he was guilty
both of underestimating diversity within a paradigm and of overestimating
incommensurability between paradigms.

One of the last of the English-language philosophers not to be cut off
from Continental thinking by the rising tide of analytic philosophy was
R. G. Collingwood. Collingwood had the notion that a discipline in any
particular epoch possesses its own constellation of absolute presupposi-
tions, and that discovering these is the task of the metaphysician. The fact
that these absolute presuppositions change is sometimes seen as having
as its consequence that there exists between the stages of development of
a discipline an incommensurability akin to Kuhn’s. This, however, is a
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misunderstanding of Collingwood’s position.’ Aside from the possibility
of there being absolute presuppositions which have been maintained since
the Greeks, when change does takes place it need not be construed as a dis-
continuous rupture, but rather as a dialectical change in which something
about the earlier presupposition is retained in whatever it turns into:

The problem of knowledge is therefore everywhere and always the same in its gen-
eral form: when we are presented with something which we do not understand . . .
we are to reach an understanding of it by finding out how it has come to be what
it is: that is to say, by learning its history. (Collingwood 1999: 178)

This kind of understanding of change was part and parcel of Lakatos’s
thinking, as his desire to become the founder of a dialectical school in the
philosophy of mathematics reveals (Larvor 1998: 9).

For Collingwood, along with this dialectical sensitivity, a capacity to
experience the force of the absolute presuppositions of the contemporary
form of the discipline about which one is philosophising is vital. While
describing which qualities someone should possess to be able to answer the
questions of philosophy of history, he remarks acidly that:

No one, for example, is likely to answer them worse than an Oxford philosopher,
who, having read Greats in his youth, was once a student of history and thinks
that this youthful experience of historical thinking entitles him to say what history
is, what it is about, how it proceeds, and what it is for. (Collingwood 1946: 8)

A similar conclusion could be formulated for philosophy of mathematics,
and indeed Kant is praised for dealing with the presuppositions of mathe-
matics ‘rather briefly” for ‘he was not very much of a mathematician; and
no philosopher can acquit himself with credit in philosophizing at length
about a region of experience in which he is not very thoroughly at home’
(Collingwood 1940: 240).° Returning to history, he continues:

An historian who has never worked much at philosophy will probably answer our
four questions in a more intelligent and valuable way than a philosopher who has
never worked much at history. (Collingwood 1946: 9)

Evidence for the equivalent statement about mathematics is provided by
the very many important contributions made by mathematicians thinking
about their discipline, several of which I shall lean on in the course of this

5 See Oldfield (1995) on this point.

¢ Collingwood is being rather unfair to Kant in that, as Friedman (1992) argues, Kant’s engagement
with mathematics and especially physics was what gave depth to his philosophy. But that then only
supports Collingwood’s thesis that to do philosophy of a discipline well one must be ‘thoroughly at
home’ with it.
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book. These include the thoughts of Weyl, Weil, Mac Lane, Rota, Atiyah,

and from the current generation, Gowers and Baez.

I.§ TOWARDS A PHILOSOPHY OF REAL MATHEMATICS

Aspray and Kitcher (1988: 17) dub as belonging to the ‘Maverick Tradition’
those philosophers of mathematics who pose such questions as:

How does mathematical knowledge grow? What is mathematical progress? What
makes some mathematical ideas (or theories) better than others? What is mathe-
matical explanation?

While their portrayal of such philosophers as non-conformists may not be
far off the mark, it clearly does not represent a desirable state of affairs.
Language has a performative role as well as a descriptive one, and we
should be looking to inspire a new generation of philosophers to sign up to
the major project of understanding how mathematics works. Maddy has
opted with her naturalist methodology not to use the word ‘philosophy’,
which seems to me an unnecessary concession. Larvor (2001) has described
a movement he terms the dialectical philosophy of mathematics, and kindly
refers to me as one of its three leading exponents. Then again my philosophy
of real mathematics may provide a louder clarion call for a time.

One way to proceed with this programme is to return to two of the found-
ing fathers of the philosophy of real mathematics: Pélya and Lakatos. This
I shall do, but in full consciousness of a problem we face. Back in the early
1960s, Lakatos and Kuhn were able to take risks with their pioneering his-
toricist philosophies of mathematics and science, where bold theses were
defended on the basis of a handful of sketchy historical reconstructions.
Now, from the perspective of our current sophisticated science studies we
look back on Kuhn’s Structure as being rather simplistic, if understandably
so, and we may agree with Peter Galison (1997) that it would be extremely
naive today to maintain that there is a unique structure to scientific revo-
lutions. Our discipline has not had the same opportunity to grow up, and
so forty years on we find ourselves in an awkward situation. We wish to
propose striking theses, since tentatively expressed claims are hardly likely
to energise our field, and yet with so little to build on it is likely that our
efforts will appear immature by comparison to our sister discipline. For
instance, historians, philosophers and sociologists of science may wonder
whether it is necessary to rake up all the paraphernalia of Lakatos’s research
programmes, as I do in chapter 7, when they now have little time for them.
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And isn’t the Bayesianism of chapters 4 and 5 beyond the pale? Hopefully,
they will allow us a period for recapitulation.

An alternative strategy would be to claim sanctuary under the protection
of philosophy of science on the pretext that mathematics be seen as a science.
Now, one of the varieties of disunity treated by Ian Hacking in his paper
‘The Disunities of the Sciences’ (Hacking 1996) he terms methodological
disunity, which concerns the diversity of styles of scientific activity. For
several years he has expressed support for the following classification of
scientific styles proposed by the historian of science A. C. Crombie:

(a) postulation in the axiomatic mathematical sciences, (b) experimental explo-
ration and measurement of complex detectable relations, (c) hypothetical mod-
elling, (d) ordering of variety by comparison and taxonomy, (e) statistical analysis
of populations, and (f) historical derivation of genetic development. (Hacking
1996: 65)

To these Hacking wishes to add ‘laboratory science . . . characterized by the
construction of apparatus intended to isolate and purify existing phenom-
ena and to create new ones’ (ibid.). Hacking applauds Crombie’s inclusion
of (a) as ‘restoring mathematics to the sciences’ (ibid.) after the logic posi-
tivists’ separation, and extends the number of its styles to two by admitting
the algorithmic style of Indian and Arabic mathematics. I am happy with
this line of argument, especially if it prevents mathematics being seen as
activity totally unlike any other. Indeed, mathematicians do more than pos-
tulate axioms and devise algorithms; it would hardly be figurative to say that
mathematicians also engage in styles (b) (see chapter 3), (c) and (d),” and
along the lines of (e) mathematicians are currently analysing the statistics
of the zeros of the Riemann zeta function.® As for Hacking’s additional sci-
entific style — the construction of apparatus — Jean-Pierre Marquis (1997)
made a start on analysing the notion that some mathematical construc-
tions are used as machinery or apparatus to explore the features of other

7 Cf. John Thompson’s comments: ‘the classification of finite simple groups is an exercise in taxonomy.
This is obvious to the expert and to the uninitiated alike. To be sure, the exercise is of colossal
length, but length is a concomitant of taxonomy. Those of us who have been engaged in this
work are the intellectual confreres of Linnaeus. Not surprisingly, I wonder if a future Darwin will
conceptualize and unify our hard won theorems. The great sticking point, though there are several,
concerns the sporadic groups. I find it aesthetically repugnant to accept that these groups are mere
anomalies . . . Possibly . . . The Origin of Groups remains to be written, along lines foreign to those
of Linnean outlook’ (quoted in Solomon 2001, 345).

Hacking (1992: 5) remarks that ‘A great many inquiries use several styles. The fifth, statistical, style
for example is now used, in various guises, in every kind of investigation, including some branches
of pure mathematics.”

o
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mathematical entities, as when, for instance, K-theory was constructed to
probe topological spaces. But let us remember that these styles of math-
ematical activity arise in particular epochs and evolve over the centuries.
After all, Hilbert’s use of axiomatisation differs quite considerably from
Euclid’s.

The fact that there is such a degree of overlap between the styles of math-
ematical and scientific activity suggests we might learn from current studies
of scientific argumentation. However, were we to ignore the differences be-
tween, say, classifying finite simple groups and tabulating their properties,
and doing similarly for the chemical elements, fundamental particles, or
zoological phyla, we would lose what is unique about mathematics. For
one thing, these styles of activity work in a more interactive fashion for
mathematics, owing to the greater homogeneity of mathematical material.
Pieces of mathematical machinery, such as homology and cohomology the-
ories, although used as ‘black boxes” by some consumers, are themselves
mathematical entities and so the possible subject matter for mathematical
classification, as for instance when the so-called spectra representing ex-
traordinary cohomology theories are gathered together to form a category,
and one of them — the sphere spectrum — shown to be maximally difficult
to compute with. Of course, there are theories of instrumentation in the
natural sciences, but nobody seriously contemplates the space of all possible
machines of a certain kind.

As T have said, I see no intrinsic reason why we should not succeed in draw-
ing connections between developments in mathematics, including those
which have occurred in recent decades, and recognisably philosophical
concerns. Indeed, we can point to a considerable number of important
studies already in existence as evidence, the vast majority in the mould of
descriptive epistemology. But to emulate philosophy of physics we need to
make a more systematic effort to engineer space for ourselves to work with
a wide range of issues. Alongside descriptions of how research mathemati-
cians have worked, we should also allow philosophy to treat interpretational
issues interior to branches of mathematics in such a way as to provide us
with insight into reasonably large portions of mathematics, on the assump-
tion that we will miss something important if we only look for features
relevant to mathematics as a whole.

Not only do we need to free ourselves from the requirement that we treat
simultaneously all of the space of mathematics, we also need to work out
varied ways to liberate ourselves from the appeal of timelessness. In doing
so temporality needs to be introduced at many scales, since mathematics





