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Solution of equations by iteration

1.1 Introduction

Equations of various kinds arise in a range of physical applications and
a substantial body of mathematical research is devoted to their study.
Some equations are rather simple: in the early days of our mathematical
education we all encountered the single linear equation ax+b = 0, where
a and b are real numbers and a # 0, whose solution is given by the
formula * = —b/a. Many equations, however, are nonlinear: a simple
example is ax? + bx + ¢ = 0, involving a quadratic polynomial with real
coefficients a, b, ¢, and a # 0. The two solutions to this equation, labelled
x1 and g, are found in terms of the coefficients of the polynomial from
the familiar formulae

—b+ Vb2 — dac —b—b2% — dac

It is less likely that you have seen the more intricate formulae for the
solution of cubic and quartic polynomial equations due to the sixteenth
century Italian mathematicians Niccolo Fontana Tartaglia (1499-1557)
and Lodovico Ferrari (1522-1565), respectively, which were published
by Girolamo Cardano (1501-1576) in 1545 in his Artis magnae sive de
requlis algebraicis liber unus. In any case, if you have been led to believe
that similar expressions involving radicals (roots of sums of products of
coefficients) will supply the solution to any polynomial equation, then
you should brace yourself for a surprise: no such closed formula exists
for a general polynomial equation of degree n when n > 5. It transpires

x

that for each n > 5 there exists a polynomial equation of degree n with
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2 1 Solution of equations by iteration

integer coefficients which cannot be solved in terms of radicals;! such is,
for example, 2% — 42 — 2 = 0.

Since there is no general formula for the solution of polynomial equa-
tions, no general formula will exist for the solution of an arbitrary non-
linear equation of the form f(x) = 0 where f is a continuous real-valued
function. How can we then decide whether or not such an equation
possesses a solution in the set of real numbers, and how can we find a
solution?

The present chapter is devoted to the study of these questions. Our
goal is to develop simple numerical methods for the approximate solution
of the equation f(z) = 0 where f is a real-valued function, defined and
continuous on a bounded and closed interval of the real line. Methods
of the kind discussed here are iterative in nature and produce sequences
of real numbers which, in favourable circumstances, converge to the
required solution.

1.2 Simple iteration

Suppose that f is a real-valued function, defined and continuous on a
bounded closed interval [a, b] of the real line. It will be tacitly assumed
throughout the chapter that a < b, so that the interval is nonempty. We
wish to find a real number £ € [a,b] such that f(£) = 0. If such & exists,
it is called a solution to the equation f(x) = 0.

Even some relatively simple equations may fail to have a solution in
the set of real numbers. Consider, for example,

frrx—a?+1.

Clearly f(xz) = 0 has no solution in any interval [a,b] of the real line.
Indeed, according to (1.1), the quadratic polynomial #2+1 has two roots:
1 =+v/—1 =1 and zo = —v/—1 = —1. However, these belong to the set
of imaginary numbers and are therefore excluded by our definition of
solution which only admits real numbers. In order to avoid difficulties
of this kind, we begin by exploring the existence of solutions to the
equation f(x) = 0 in the set of real numbers. Our first result in this
direction is rather simple.
1 This result was proved in 1824 by the Norwegian mathematician Niels Henrik Abel
(1802-1829), and was further refined in the work of Evariste Galois (1811-1832)

who clarified the circumstances in which a closed formula may exist for the solution
of a polynomial equation of degree n in terms of radicals.
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1.2 Simple iteration 3

Theorem 1.1 Let f be a real-valued function, defined and continuous
on a bounded closed interval [a,b] of the real line. Assume, further, that
f(a)f(b) <0; then, there exists & in [a,b] such that f(§) = 0.

Proof If f(a) =0or f(b) =0, then £ = a or £ = b, respectively, and the
proof is complete. Now, suppose that f(a)f(b) # 0. Then, f(a)f(b) < 0;
in other words, 0 belongs to the open interval whose endpoints are f(a)
and f(b). By the Intermediate Value Theorem (Theorem A.1), there
exists € in the open interval (a,b) such that f(§) = 0. O

To paraphrase Theorem 1.1, if a continuous function f has opposite
signs at the endpoints of the interval [a, b], then the equation f(xz) =0
has a solution in (a,b). The converse statement is, of course, false.
Consider, for example, a continuous function defined on [a,b] which
changes sign in the open interval (a,b) an even number of times, with
f(a)f(b) # 0; then, f(a)f(b) > 0 even though f(z) = 0 has solutions
inside [a,b]. Of course, in the latter case, there exist an even number
of subintervals of (a,b) at the endpoints of each of which f does have
opposite signs. However, finding such subintervals may not always be
easy.

To illustrate this last point, consider the rather pathological function

1 1
S S T T Ml =105
depicted in Figure 1.1 for z in the closed interval [0.8,1.8] and M = 200.
The solutions 21 = 1.05— (1/M) and z2 = 1.05+ (1/M) to the equation
f(x) = 0 are only a distance 2/M apart and, for large and positive M,
locating them computationally will be a challenging task.

(1.2)

Remark 1.1 If you have access to the mathematical software package
Maple, plot the function f by typing

plot(1/2-1/(1+200*abs(x-1.05)), x=0.8..1.8, y=-0.5..0.6);

at the Maple command line, and then repeat this experiment by choosing
M = 2000, 20000, 200000, 2000000, and 20000000 in place of the num-
ber 200. What do you observe? For the last two values of M, replot the
function f for x in the subinterval [1.04999,1.05001]. o

An alternative sufficient condition for the existence of a solution to
the equation f(z) = 0 is arrived at by rewriting it in the equivalent
form z — g(x) = 0 where g is a certain real-valued function, defined
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4 1 Solution of equations by iteration
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Fig. 1.1. Graph of the function f: z +— 1 — m for z € [0.8,1.8].

and continuous on [a, b]; the choice of g and its relationship with f will
be clarified below through examples. Upon such a transformation the
problem of solving the equation f(z) = 0 is converted into one of finding
¢ such that £ — g(§) = 0.

Theorem 1.2 (Brouwer’s Fixed Point Theorem) Suppose that g
s a real-valued function, defined and continuous on a bounded closed
interval [a,b] of the real line, and let g(x) € [a,b] for all x € [a,b].
Then, there exists & in [a,b] such that & = g(&); the real number & is
called o fixed point of the function g.

Proof Let f(x) = x—g(x). Then, f(a) = a—g(a) < 0 since g(a) € [a,b]
and f(b) =b— g(b) > 0 since g(b) € [a,b]. Consequently, f(a)f(b) <0,
with f defined and continuous on the closed interval [a,b]. By Theorem
1.1 there exists £ € [a, b] such that 0 = f(§) = & — g(&). O

Figure 1.2 depicts the graph of a function x — g¢(z), defined and
continuous on a closed interval [a,b] of the real line, such that g(z)
belongs to [a,b] for all = in [a,b]. The function g has three fixed points
in the interval [a, b]: the z-coordinates of the three points of intersection
of the graph of g with the straight line y = .

Of course, any equation of the form f(z) = 0 can be rewritten in the
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1.2 Simple iteration 5

a b

Fig. 1.2. Graph of a function g, defined and continuous on the interval [a, b],
which maps [a, b] into itself; g has three fixed points in [a, b]: the z-coordinates
of the three points of intersection of the graph of g with y = x.

equivalent form of x = g(z) by letting g(x) = x+ f(x). While there is no
guarantee that the function g, so defined, will satisfy the conditions of
Theorem 1.2, there are many alternative ways of transforming f(z) =0
into z = g(z), and we only have to find one such rearrangement with ¢
continuous on [a,b] and such that g(z) € [a,b] for all z € [a,b]. Sounds
simple? Fine. Take a look at the following example.

Example 1.1 Consider the function f defined by f(xz) = e* — 2z — 1
for x € [1,2]. Clearly, f(1) < 0 and f(2) > 0. Thus we deduce from
Theorem 1.1 the existence of & in [1,2] such that f(€) = 0.

In order to relate this example to Theorem 1.2, let us rewrite the equa-
tion f(x) = 0 in the equivalent form x—g(x) = 0, where the function g is
defined on the interval [1,2] by g(x) = In(2x + 1); here (and throughout
the book) In means log,. As g(1) € [1,2], g(2) € [1,2] and g is monotonic
increasing, it follows that g(x) € [1,2] for all x € [1, 2], showing that g
satisfies the conditions of Theorem 1.2. Thus, again, we deduce the
existence of £ € [1,2] such that £ — g(£) = 0 or, equivalently, f(£) = 0.
We could have also rewritten our equation as z = (e*—1)/2. However,
the associated function g:  — (e —1)/2 does not map the interval [1, 2]
into itself, so Theorem 1.2 cannot then be applied. <o
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6 1 Solution of equations by iteration

Although the ability to verify the existence of a solution to the equa-
tion f(z) = 0 is important, none of what has been said so far provides
a method for solving this equation. The following definition is a first
step in this direction: it will lead to the construction of an algorithm for
computing an approximation to the fixed point £ of the function g, and
will thereby supply an approximate solution to the equivalent equation

f(z) =0.

Definition 1.1 Suppose that g is a real-valued function, defined and
continuous on a bounded closed interval [a,b] of the real line, and assume
that g(z) € [a,b] for all x € [a,b]. Given that xo € [a,b], the recursion
defined by

Th+1 :g(zk)a k:051727"' ) (13)

1s called a simple iteration; the numbers xy, k > 0, are referred to as
iterates.

If the sequence (zy) defined by (1.3) converges, the limit must be a
fixed point of the function g, since g is continuous on a closed interval.
Indeed, writing £ = limy_, o, %, we have that

§= lim zp0 = lim g(zp) =g (klij;o wk) =9(&), (1.4)

where the second equality follows from (1.3) and the third equality is a
consequence of the continuity of g.

A sufficient condition for the convergence of the sequence (xy) is pro-
vided by our next result which represents a refinement of Brouwer’s
Fixed Point Theorem, under the additional assumption that the map-
ping g is a contraction.

Definition 1.2 (Contraction) Suppose that g is a real-valued func-
tion, defined and continuous on a bounded closed interval [a,b] of the
real line. Then, g is said to be a contraction on [a,b] if there exists a
constant L such that 0 < L <1 and

lg(z) —g(W)| < Lz —y| Y,y €la,b]. (1.5)

Remark 1.2 The terminology ‘contraction’ stems from the fact that
when (1.5) holds with 0 < L < 1, the distance | g(x) — g(y) | between the
images of the points x, y is (at least 1/ L times) smaller than the distance
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1.2 Simple iteration 7

|z —y| between x and y. More generally, when L is any positive real
number, (1.5) is referred to as a Lipschitz condition.!

Armed with Definition 1.2, we are now ready to state the main result
of this section.

Theorem 1.3 (Contraction Mapping Theorem) Let g be a real-
valued function, defined and continuous on a bounded closed interval
[a,b] of the real line, and assume that g(x) € [a,b] for all z € [a,b].
Suppose, further, that g is a contraction on [a,b]. Then, g has a unique
fixed point £ in the interval [a,b]. Moreover, the sequence (xy) defined
by (1.3) converges to & as k — oo for any starting value xq in [a,b].

Proof The existence of a fixed point £ for g is a consequence of Theorem
1.2. The uniqueness of this fixed point follows from (1.5) by contradic-
tion: for suppose that g has a second fixed point, n, in [a,b]. Then,

1§ =nl=19(§) —g)| < LI —nl,

e, 1—L)€—n|<0. As1— L >0, we deduce that n = &.

Let z¢ be any element of [a,b] and consider the sequence (x) de-
fined by (1.3). We shall prove that (zj) converges to the fixed point &.
According to (1.5) we have that

lze =&l =lg(er-1) —9(©) | < Lz — €|, k=1,
from which we then deduce by induction that
|oe — €| < LM @ — €], k>1. (1.6)

As L € (0,1), it follows that limj_ ., L¥ = 0, and hence we conclude
that limg o0 |2k — & = 0. O

Let us illustrate the Contraction Mapping Theorem by an example.

Example 1.2 Consider the equation f(x) =0 on the interval [1,2] with
f(z) =e"—2x—1, as in Example 1.1. Recall from Example 1.1 that this
equation has a solution, &, in the interval [1,2], and & is a fized point of
the function g defined on [1,2] by g(x) = In(2x + 1).

I Rudolf Otto Sigismund Lipschitz (14 May 1832, Konigsberg, Prussia (now Kalin-
ingrad, Russia) — 7 October 1903, Bonn, Germany) made important contributions
to number theory, the theory of Bessel functions and Fourier series, the theory
of ordinary and partial differential equations, and to analytical mechanics and
potential theory.
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8 1 Solution of equations by iteration

Table 1.1. The sequence (zx) defined by (1.8).

Tk

1.000000
1.098612
1.162283
1.201339
1.224563
1.238121
1.245952
1.250447
1.253018
1.254486
1.255323
1.255800

HO O Uk WD~ O| &

— =

Now, the function g is defined and continuous on the interval [1, 2], and g
is differentiable on (1,2). Thus, by the Mean Value Theorem (Theorem
A.3), for any x, y in [1, 2] we have that

l9(z) —gW) | =1g' M@ —y) | =g ]|z -yl (1.7)
for some 7 that lies between x and y and is therefore in the interval
[1,2]. Further, ¢'(z) = 2/(2z 4+ 1) and ¢"(z) = —4/(2z + 1)%. As

¢"(x) < 0 for all z in [1,2], ¢’ is monotonic decreasing on [1,2]. Hence
g (1) >4g'(n) >4d(2), e, g (n) €[2/52/3]. Thus we deduce from (1.7)
that

lg(x) —gy)| < Llz—y| Vaz,ye[l,2],

with L = 2/3. According to the Contraction Mapping Theorem, the
sequence (xy) defined by the simple iteration

Thr =Inzp+1), k=0,1,2,..., (1.8)

converges to ¢ for any starting value z in [1, 2]. Let us choose 2y = 1, for
example, and compute the next 11 iterates, say. The results are shown
in Table 1.1. Even though we have carried six decimal digits, after 11
iterations only the first two decimal digits of the iterates x; appear to
have settled; thus it seems likely that ¢ = 1.26 to two decimal digits. <

You may now wonder how many iterations we should perform in (1.8)
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1.2 Simple iteration 9

to ensure that all six decimals have converged to their correct values. In
order to answer this question, we need to carry out some analysis.

Theorem 1.4 Consider the simple iteration (1.3) where the function
g satisfies the hypotheses of the Contraction Mapping Theorem on the
bounded closed interval [a,b]. Given x¢ € [a,b] and a certain tolerance
e > 0, let ko(e) denote the smallest positive integer such that xy, is no
more than & away from the (unknown) fized point &, i.e., |y —&| < e,
for all k > ko(e). Then,

In|zy —xzo| —In(e(1— L))

Fo(e) < In(1/L)

+1, (1.9)

where, for a real number x, x| signifies the largest integer less than or
equal to x.
Proof From (1.6) in the proof of Theorem 1.3 we know that
o — &l < LFlao — €], k>1.
Using this result with £ = 1, we obtain
lzo — &| = |0 — 21 + 21 — §|
<lzo — 21|+ |z1 — ¢
< |wo — z1] + Lo — &

Hence

|zg — &| < |ro — 1] .

1-L
By substituting this into (1.6) we get
k
1-L
Thus, in particular, |xx — £| < € provided that
1
1-L
On taking the (natural) logarithm of each side in the last inequality, we
find that |z — €| < e for all k such that
> In|zy — 29| —In(e(1 - L))
- In(1/L)

Therefore, the smallest integer ko(e) such that |z — & < e for all

lxg — €| < |x1 — o] - (1.10)

Lk

|JJ1—J)0|SE.
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10 1 Solution of equations by iteration

k > ko(e) cannot exceed the expression on the right-hand side of the
inequality (1.9). U

This result provides an upper bound on the maximum number of
iterations required to ensure that the error between the kth iterate xj
and the (unknown) fixed point £ is below the prescribed tolerance e.
Note, in particular, from (1.9), that if L is close to 1, then ko(¢) may
be quite large for any fixed . We shall revisit this point later on in the
chapter.

Example 1.3 Now we can return to Ezample 1.2 to answer the ques-
tion posed there about the mazximum number of iterations required, with
starting value To = 1, to ensure that the last iterate computed is correct
to siz decimal digits.

Letting ¢ = 0.5 x 107 and recalling from Example 1.2 that L = 2/3, the
formula (1.9) yields ko(e) < [32.778918] + 1, so we have that ko(e) < 33.
In fact, 33 is a somewhat pessimistic overestimate of the number of
iterations required: computing the iterates xj successively shows that
already xo5 is correct to six decimal digits, giving £ = 1.256431. <o

Condition (1.5) can be rewritten in the following equivalent form:
9(x) — 9(y)

r—y
with L € (0,1), which can, in turn, be rephrased by saying that the
absolute value of the slope of the function g does not exceed L € (0, 1).

‘<L Va,y € [a,b], z#y,

Assuming that ¢ is a differentiable function on the open interval (a,b),
the Mean Value Theorem (Theorem A.3) tells us that

o(e) - z(y) _
for some 7 that lies between x and y and is therefore contained in the
interval (a,b).

We shall therefore adopt the following assumption that is somewhat
stronger than (1.5) but is easier to verify in practice:

g is differentiable on (a,b) and
(1.11)
3L € (0,1) such that |¢’(z)| < L for all x € (a,b).

Consequently, Theorem 1.3 still holds when (1.5) is replaced by (1.11).
We note that the requirement in (1.11) that g be differentiable is
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