
CB492-FMDVR CB492/LEWVERE November 15, 2002 9:0 Char Count= 0

SETS FOR MATHEMATICS

F. WILLIAM LAWVERE
State University of New York at Buffalo

ROBERT ROSEBRUGH
Mount Allison University

iii



CB492-FMDVR CB492/LEWVERE November 15, 2002 9:0 Char Count= 0

published by the press syndicate of the univers ity of cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge univers ity press
The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia

Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© F. William Lawvere, Robert Rosebrugh 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typeface Times 11/14 pt. System LATEX 2ε [tb]

Illustrations by Francisco Marmolejo

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Lawvere, F. W.

Sets for mathematics / F. William Lawvere, Robert Rosebrugh.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-80444-2 – ISBN 0-521-01060-8 (pbk.)

1. Set theory. I. Rosebrugh, Robert, 1948– II. Title.

QA248 .L28 2002
511.3′22 – dc21 2002071478

ISBN 0 521 80444 2 hardback
ISBN 0 521 01060 8 paperback

Portraits on the front cover are of Georg Cantor and Richard Dedekind (top) and Samuel Eilenberg and Saunders
Mac Lane (bottom). The portrait of Samuel Eilenberg appears by kind permission of Columbia University.

iv



CB492-FMDVR CB492/LEWVERE November 15, 2002 9:0 Char Count= 0

Contents

Preface page ix
Contributors to Sets for Mathematics xiii

1 Abstract Sets and Mappings 1
1.1 Sets, Mappings, and Composition 1
1.2 Listings, Properties, and Elements 4
1.3 Surjective and Injective Mappings 8
1.4 Associativity and Categories 10
1.5 Separators and the Empty Set 11
1.6 Generalized Elements 15
1.7 Mappings as Properties 17
1.8 Additional Exercises 23

2 Sums, Monomorphisms, and Parts 26
2.1 Sum as a Universal Property 26
2.2 Monomorphisms and Parts 32
2.3 Inclusion and Membership 34
2.4 Characteristic Functions 38
2.5 Inverse Image of a Part 40
2.6 Additional Exercises 44

3 Finite Inverse Limits 48
3.1 Retractions 48
3.2 Isomorphism and Dedekind Finiteness 54
3.3 Cartesian Products and Graphs 58
3.4 Equalizers 66
3.5 Pullbacks 69
3.6 Inverse Limits 71
3.7 Additional Exercises 75

v



CB492-FMDVR CB492/LEWVERE November 15, 2002 9:0 Char Count= 0

vi Contents

4 Colimits, Epimorphisms, and the Axiom of Choice 78
4.1 Colimits are Dual to Limits 78
4.2 Epimorphisms and Split Surjections 80
4.3 The Axiom of Choice 84
4.4 Partitions and Equivalence Relations 85
4.5 Split Images 89
4.6 The Axiom of Choice as the Distinguishing Property

of Constant/Random Sets 92
4.7 Additional Exercises 94

5 Mapping Sets and Exponentials 96
5.1 Natural Bijection and Functoriality 96
5.2 Exponentiation 98
5.3 Functoriality of Function Spaces 102
5.4 Additional Exercises 108

6 Summary of the Axioms and an Example of Variable Sets 111
6.1 Axioms for Abstract Sets and Mappings 111
6.2 Truth Values for Two-Stage Variable Sets 114
6.3 Additional Exercises 117

7 Consequences and Uses of Exponentials 120
7.1 Concrete Duality: The Behavior of Monics and Epics under

the Contravariant Functoriality of Exponentiation 120
7.2 The Distributive Law 126
7.3 Cantor’s Diagonal Argument 129
7.4 Additional Exercises 134

8 More on Power Sets 136
8.1 Images 136
8.2 The Covariant Power Set Functor 141
8.3 The Natural Map PX �� 22X

145
8.4 Measuring, Averaging, and Winning with V -Valued Quantities 148
8.5 Additional Exercises 152

9 Introduction to Variable Sets 154
9.1 The Axiom of Infinity: Number Theory 154
9.2 Recursion 157
9.3 Arithmetic of N 160
9.4 Additional Exercises 165

10 Models of Additional Variation 167
10.1 Monoids, Posets, and Groupoids 167
10.2 Actions 171
10.3 Reversible Graphs 176
10.4 Chaotic Graphs 180



CB492-FMDVR CB492/LEWVERE November 15, 2002 9:0 Char Count= 0

Contents vii

10.5 Feedback and Control 186
10.6 To and from Idempotents 189
10.7 Additional Exercises 191

Appendixes 193
A Logic as the Algebra of Parts 193

A.0 Why Study Logic? 193
A.1 Basic Operators and Their Rules of Inference 195
A.2 Fields, Nilpotents, Idempotents 212

B The Axiom of Choice and Maximal Principles 220
C Definitions, Symbols, and the Greek Alphabet 231

C.1 Definitions of Some Mathematical and Logical Concepts 231
C.2 Mathematical Notations and Logical Symbols 251
C.3 The Greek Alphabet 252

Bibliography 253
Index 257



CB492-DVR-01 CB492/LEWVERE November 1, 2002 11:31 Char Count= 0

1

Abstract Sets and Mappings

1.1 Sets, Mappings, and Composition

Let us discuss the idea of abstract constant sets and the mappings between them
in order to have a picture of this, our central example, before formalizing a math-
ematical definition. An abstract set is supposed to have elements, each of which
has no structure, and is itself supposed to have no internal structure, except that the
elements can be distinguished as equal or unequal, and to have no external structure
except for the number of elements. In the category of abstract sets, there occur sets
of all possible sizes, including finite and infinite sizes (to be defined later). It has
been said that an abstract set is like a mental “bag of dots,” except of course that
the bag has no shape; thus,

• •
•

•

•

• •

•
•

•

•
•

•• •

• •

•
•

•

•
•
•

•

may be a convenient way of picturing a certain abstract set for some considerations,
but what is apparently the same abstract set may be pictured as

• • • • • • • •
• •

• • • • • •
•

•
• •

• •
•

for other considerations.

1
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2 Abstract Sets and Mappings

What gives the category of sets its power is the concept of mapping. A mapping
f from an abstract set A to an abstract set B is often explained through the use of
the word value. (However, since the elements of B have no structure, it would be
misleading to always think of these values as quantities.) Each mapping f from A
to B satisfies

for each element x of A
there is exactly one element y of B

such that y is a value of f at x

This justifies the phrase “the value”; the value of f at x is usually denoted by
f (x); it is an element of B. Thus, a mapping is single-valued and everywhere defined
(everywhere on its domain) as in analysis, but it also has a definite codomain (usually
bigger than its set of actual values). Any f at all that satisfies this one property is
considered to be a mapping from A to B in the category of abstract constant sets; that
is why these mappings are referred to as “arbitrary”. An important and suggestive
notation is the following:

Notation 1.1: The arrow notation A
f �� B just means the domain of f is A and

the codomain of f is B, and we write dom( f ) = A and cod( f ) = B. (We will
usually use capital letters for sets and lowercase letters for mappings.) For printing
convenience, in simple cases this is also written with a colon f : A �� B. We
can regard the notation f : A �� B as expressing the statement dom( f ) = A &
cod( f ) = B, where & is the logical symbol for and.

For small A and B, a mapping from A to B can be pictured using its cograph or
internal diagram by

A B

•
•
• •

•
•

•
•

•

f

where f (x) is the dot at the right end of the line that has x at its left end for each
of the three possible elements x .

Abstract sets and mappings are a category, which means above all that there is
a composition of mappings, i.e., given any pair f : A �� B and g : B �� C there
is a specified way of combining them to give a resulting mapping g ◦ f : A �� C.

Note that the codomain set of the first mapping f must be exactly the same set
as the domain set of the second mapping g. It is common to use the notation ◦
for composition and to read it as “following,” but we will also, and much more
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1.1 Sets, Mappings, and Composition 3

often, denote the composite “g following f ” just by g f . A particular instance of
composition can be pictured by an external diagram or by an internal diagram as
below. First consider any three mappings f , g, and m with domains and codomains
as indicated:

A B

C

•
•

•

•
•

•
•

••
•
••

A B

C

f

gm

External Diagram Internal Diagram

f

m
g

The internal cograph diagrams express the full information about particular maps,
which is often more than we need; thus, we will use simple, external diagrams
wherever possible.

Since any mapping satisfies restrictions of the kind “for each . . . there is exactly
one . . . ,” in the diagram above, we observe that

� for each element a of A there is exactly one element b of B for which b is a value
of f at a (briefly f (a) = b);

� for each element b of B there is exactly one element c of C for which c is a value
of g at b (briefly g(b) = c);

� for each element a of A there is exactly one element c of C for which c is a value
of m at a (briefly m(a) = c).

The external diagram above is said to be a “commutative diagram”, if and only if
m is actually the composite of g following f ; then, notationally, we write simply
m = g f .

More precisely, for the triangular diagram to be considered commutative, the
relation between f, g, m must have the following property:

For each element a of A we can find the value of m(a) by proceeding in two
steps: first find f (a) and then find g( f (a)); the latter is the same as m(a).

(Examining the internal diagram shows that m = g f in the figure above.)
A familiar example, when A = B = C is a set of numbers equipped with struc-

tural mappings providing addition and multiplication, involves f (x) = x2 and
g(x) = x + 2 so that (g ◦ f )(x) = x2 + 2. The value of the composite mapping
at x is the result of taking the value of g at the value of f at x . In contexts such as
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this where both multiplication and composition are present, it is necessary to use
distinct notations for them.

Exercise 1.2
Express the mapping that associates to a number x the value

√
x2 + 2 as a composite

of three mappings. ♦

We need to be more precise about the concept of category. The ideas of set, map-
ping, and composition will guide our definition, but we need one more ingredient.
For each set A there is the identity mapping 1A : A �� A whose values are deter-
mined by 1A(x) = x . For any set A, this definition determines a particular mapping
among the (possibly many) mappings whose domain and codomain are both A.

On the basis of the preceding considerations we have part of the information
required to define the general notion of “category”. The first two items listed corre-
spond to abstract sets and arbitrary mappings in the example of the category of sets.

A category C has the following data:

� Objects: denoted A, B, C, . . .
� Arrows: denoted f, g, h, . . . (arrows are also often called morphisms or maps)
� To each arrow f is assigned an object called its domain and an object called its

codomain (if f has domain A and codomain B, this is denoted f : A �� B)
� Composition: To each f : A �� B and g : B �� C there is assigned an arrow

g f : A �� C called “the composite of f and g” (or “g following f ”)
� Identities: To each object A is assigned an arrow 1A : A �� A called “the identity

on A”.

1.2 Listings, Properties, and Elements

We have not finished defining category because the preceding data must be con-
strained by some general requirements. We first continue with the discussion of
elements. Indeed, we can immediately simplify things a little: an idea of element
is not necessary as a separate idea because we may always identify the elements
themselves as special mappings. That will be an extreme case of the parameterizing
of elements of sets. Let us start with a more intermediate case, for example, the
set of mathematicians, together with the indication of two examples, say Sir Isaac
Newton and Gottfried Wilhelm Leibniz. Mathematically, the model will consist
not only of an abstract set A, (to stand for the set of all mathematicians) but also
of another abstract set of two elements 1 and 2 to act as labels and the specified
mapping with codomain A whose value at 1 is “Newton” and whose value at 2 is
“Leibniz”. The two-element set is the domain of the parameterization.

Such a specific parameterization of elements is one of two kinds of features of
a set ignored or held in abeyance when we form the abstract set. Essentially, all of
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1.2 Listings, Properties, and Elements 5

the terms – parameterization, listing, family – have abstractly the same meaning:
simply looking at one mapping into a set A of interest, rather than just at the one
set A all by itself.

Whenever we need to insist upon the abstractness of the sets, such a preferred
listing is one of the two kinds of features we are abstracting away.

The other of the two aspects of the elements of an actual concrete aggregation
(which are to be ignored upon abstraction) involves the properties that the elements
might have. For example, consider the set of all the mathematicians and the property
“was born during the seventeenth century” that some of the mathematicians have and
some do not. One might think that this is an important property of mathematicians
as such, but nonetheless one might momentarily just be interested in how many
mathematicians there are.

Certain properties are interpreted as particular mappings by using the two-
element set of “truth values” – true, false – from which we also arrive (by the
abstraction) at the abstract set of two elements within which “true” could be taken
as exemplary. If we consider a particular mapping such as

A 2

•
•

•
•

•

•

•
true
false

we see that all those elements of A that go to “true” will constitute one portion of A,
and so f determines a property “true” for some elements, and “not true,” or “false,”
for others. There are properties for which the codomain of f will need more than
two elements, for example, age of people: the codomain will need at least as many
elements as there are different ages.

As far as listing or parameterizing is concerned, an extreme case is to imagine that
all the elements have been listed by the given procedure. The opposite extreme case
is one in which no examples of elements are being offered even though the actual
set A under discussion has some arbitrary size. That is, in this extreme case the
index set is an empty set. Of course, the whole listing or parameterization in this
extreme case amounts really to nothing more than the one abstract set A itself.

Just short of the extreme of not listing any is listing just one element. We can do
this using a one-element set as parameter set.

domain codomain

•

•
•

•
•

•
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To characterize mathematically what the one-element set is, we will consider it
in terms of the property that does not distinguish. The following is the first axiom
we require of the category of sets and mappings.

AXIOM: TERMINAL SET
There is a set 1 such that for any set A there is exactly one mapping A �� 1. This
unique mapping is given the same name A as the set that is its domain.

We call 1 a terminal object of the category of sets and mappings. There may
or may not be more than one terminal object; it will make no difference to the
mathematical content. In a given discussion the symbol 1 will denote a chosen
terminal object; as we will see, which terminal object is chosen will also have no
effect on the mathematical content.

Several axioms will be stated as we proceed. The axiom just stated is part of the
stronger requirement that the category of sets and mappings has finite inverse limits
(see Section 3.6). A typical cograph picture is

A 1

•
•
•
•

Only a one-element set V = 1 can have the extreme feature that one cannot detect
any distinctions between the elements of A by using only “properties” A �� V .
Having understood what a one-element set is in terms of mapping to it, we can now
use mappings from it to get more information about arbitrary A.

Definition 1.3: An element of a set A is any mapping whose codomain is A and
whose domain is 1 (or abbreviated . . . 1 a �� A).

(Why does 1 itself have exactly one element according to this definition?)
The first consequence of our definition is that

element is a special case of mapping.

A second expression of the role of 1 is that

evaluation is a special case of composition.

In other words, if we consider any mapping f from A to B and then consider any
element a of A, the codomain of a and the domain of f are the same; thus, we can
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form the composite f a,

which will be a mapping 1 �� B. But since the domain is 1, this means that f a
is an element of B. Which element is it? It can only be, and clearly is, the value of
f at a:

A
f

1

a

fa
B

That is, if a is an element, f a = f (a).
Finally, a third important expression of the role of 1 is that

evaluation of a composite is a special case of the
Associative law

of composition (which will be one of the clauses in the definition of category). In
order to see this, suppose m = g f and consider

The formula (in which we introduce the symbols ∀ to mean “for all” and ⇒ to
mean “implies”)

m = g f =⇒ [∀ a[1 a �� A ⇒ m(a) = g( f a)]]

expresses our idea of evaluation of the composition of two mappings; i. e. if m is
the composite of f and g, then for any element a of the domain of f the value of
m at a is equal to the value of g at f (a). More briefly, (g f )a = g( f a), which is a
case of the associative law.

The three points emphasized here mean that our internal pictures can be (when
necessary or useful) completely interpreted in terms of external pictures by also
using the set 1.

Notice that the axiom of the terminal set and the definition of element imply
immediately that the set 1 whose existence is guaranteed by the axiom has exactly
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one element, namely, the unique mapping from 1 to 1. There is always an identity
mapping from a set to itself, so this unique mapping from 1 to 1 must be the identity
mapping on 1.

We want to introduce two more logical symbols: the symbol ∃ is read “there ex-
ists,” and ∃! is read “there exists exactly one”. Thus, we can repeat the characteristic
feature of every f : A �� B as follows:

∀a : 1 �� A ∃! b : 1 �� B[b is a value of f at a]

But this is a special case of the fact that composition in general is uniquely defined.

1.3 Surjective and Injective Mappings

Recall the first internal diagram (cograph) of a mapping that we considered:

A B

•
•
• ••

•

•
•
•

•
f

Note that it is not the case for the f in our picture that

for each element b of B
there is an element x of A

for which b is the value of f at x. ( f(x) = b)

Definition 1.4: A mapping f : A �� B that has the existence property “for each
element b of B there is an element x of A for which b = f (x)” is called a surjective
mapping.

Neither is it the case that the f in our picture has the property

for each element b of B
there is at most one element x of A

for which f(x) = b

Definition 1.5: A mapping f : A �� B that has the uniqueness property “given
any element b of B there is at most one element x of A for which f (x) = b” is
called an injective mapping. In other words, if f is an injective mapping, then for
all elements x, x ′ of A, if f (x) = f (x ′), then x = x ′.

Definition 1.6: A mapping that is both surjective and injective is called bijective.
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1.3 Surjective and Injective Mappings 9

Thus, the f pictured above is neither surjective nor injective, but in the figure
below g : A �� B is an injective mapping from the same A and to the same B.

A B

•
•
• ••

•

•
•
•

•
g

Exercise 1.7
Is the pictured g surjective? ♦

Exercise 1.8
Are there any surjective mappings A �� B for the pictured A, B? ♦

Exercise 1.9
How many mappings from the three-element set A to the seven-element set B are
there? Can we picture them all? ♦

Exercise 1.10
Same as 1.9, but for mappings B �� A from a seven-element to a three-element
set. ♦

Exercise 1.11
Are there any surjective B �� A? Are there any injective ones? ♦

Exercise 1.12
What definition of “ f1 
= f2” is presupposed by the idea “number of” mappings
we used in 1.9 and 1.10? ♦

Exercises 1.9 and 1.12 illustrate that the feature “external number/internal in-
equality of instances” characteristic of an abstract set is also associated with the
notion “mapping from A to B,” except that the elements (the mappings) are not
free of structure. But abstractness of the sets really means that the elements are for
the moment considered without internal structure. By considering the mappings
from A to B with their internal structure ignored, we obtain a new abstract set B A.
Conversely, we will see in Chapter 5 how any abstract set F of the right size can
act as mappings between given abstract sets. (For example, in computers variable
programs are just a particular kind of variable data.)
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1.4 Associativity and Categories

Recall that we saw in Section 1.2 that an “associative law” in a special case expresses
the evaluation of composition. Indeed, whenever we have

1 a �� A
f �� B

g �� C

then we have the equation (g f )(a) = g( f a).
If we replace a by a general mapping u : T �� A whose domain is not necessarily

1, we obtain the Associative law

(g f )u = g( f u)

which actually turns out to be true for any three mappings that can be composed;
i.e., that from the commutativity of the two triangles below we can conclude that
moreover the outer two composite paths from T to C have equal composites (it is
said that the whole diagram is therefore “commutative”).

(gf)u = g(fu)

A

f

gf
C

T

u

fu
B

g

Since the 1 among abstract sets has the special feature (which we discuss in
Section 1.5) that it can separate mappings, in abstract sets the general associative
law follows from the special case in which T = 1.

An important property of identity mappings is that they not only “do nothing” to
an element but that they have this same property with respect to composition. Thus,
if 1A : A �� A and 1B : B �� B are identity mappings, then for any f : A �� B
we have the equations

f 1A = f = 1B f

With these ideas in hand we are ready to give the completed definition of category.
The beginning of our specification repeats what we had before:

Definition 1.13: A category C has the following data:

� Objects: denoted A, B, C, . . .
� Arrows: denoted f, g, h, . . . (arrows are also often called morphisms or maps)
� To each arrow f is assigned an object called its domain and an object called its

codomain (if f has domain A and codomain B, this is denoted f : A �� B or
A

f �� B)
� Composition: To each f : A �� B and g : B �� C , there is assigned an arrow

g f : A �� C called “the composite g following f ”
� Identities: To each object A is assigned an arrow 1A : A �� A called

“the identity on A”.
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The data above satisfy the axioms

� Associativity: if A
f �� B

g �� C h �� D, then h(g f ) = (hg) f
� Identity: if f : A �� B, then f = f 1A and f = 1B f .

As we have been emphasizing,

AXIOM: S IS A CATEGORY
Abstract sets and mappings form a category (whose objects are called sets, and
whose arrows are called mappings).

This is the basic axiom implicit in our references to the “category of abstract sets
and mappings” above. There are many other examples of categories to be found in
mathematics, and a few of these are described in the exercises in Section 1.8 at the
end of the chapter.

1.5 Separators and the Empty Set

If a pair of mappings

A
f1 ��
f2

�� B

has the same domain and has the same codomain (i.e., they are two mappings that
could be equal), then we can discover whether they are really equal by testing with
elements

(∀x[1 x �� A ⇒ f1x = f2x]) =⇒ f1 = f2

i.e., if the value of f1 equals the value of f2 at every element x of A, then f1 = f2.

This is one of the ways in which we can conclude that f1 = f2. The converse
implication of the statement is trivial because it is merely substitution of equals for
equals (a general idea of mathematics). But the indicated implication is a special,
particularly powerful feature of one-element abstract sets. In its contrapositive form
it states: If f1 
= f2, then there exists at least one element x at which the values of
f1 and f2 are different. (This is the answer to Exercise 1.12!) For a category C an
object with this property is called a separator.

Definition 1.14: An object S in a category C is a separator if and only if whenever

X
f1 ��
f2

�� Y

are arrows of C then

(∀x [S x �� X ⇒ f1x = f2x]) =⇒ f1 = f2



CB492-DVR-01 CB492/LEWVERE November 1, 2002 11:31 Char Count= 0

12 Abstract Sets and Mappings

As mentioned in 1.4 the property we have been describing is required of the
terminal object 1 as a further axiom in the category of abstract sets and arbitrary
mappings. It is a powerful axiom with many uses; it is special to the category S
of abstract sets and will not hold in categories of variable and cohesive sets where
more general elements than just the “points” considered here may be required for
the validity of statements even analogous to the following one (see Section 1.6):

AXIOM: THE TERMINAL OBJECT 1 SEPARATES MAPPINGS IN S
A one-element set 1 is a separator in S, i.e., if

X
f1 ��
f2

�� Y

then

(∀x [1 x �� X ⇒ f1x = f2x]) =⇒ f1 = f2

Exercise 1.15
In the category of abstract sets S, any set A with at least one element 1 x �� A is
also a separator. (When an exercise is a statement, prove the statement.) ♦

We return to the extreme case of listing or parameterization in which no elements
are listed. In this case there cannot be more than one listing map (we will use “map”
and “mapping” synonymously!) into A since the indexing set we are trying to use
is empty. On the other hand, there must be one since the statement defining the
property of a mapping is a requirement on each element of the domain set (that
there is assigned to it a unique value element in the codomain). This property
is satisfied “vacuously” by a mapping from a set without elements since there is
simply no requirement. Thus, there exists a unique mapping from an empty set to
any given set. We require such a set as an axiom.

AXIOM: INITIAL SET
There is a set 0 such that for any set A there is exactly one mapping 0 �� A.

We call 0 an initial object of the category of sets and mappings.
Note that the form of this axiom is the same as the form of the axiom of the

terminal set, i.e. we require the existence of a set and a unique mapping for every
set except that the unique mapping is now to the arbitrary set whereas formerly
it was from the arbitrary set. Like the axiom of the terminal set, the axiom of the
initial set will become part of a stronger axiom later. The initial set is often called
the empty set because, as we will later see, there are no maps 1 �� 0.
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Exercise 1.16
In the category of abstract sets S the initial set 0 is not a separator. (Assume that
two sets A and B exist with at least two maps A �� B.) ♦

ADDITIONAL EXAMPLES:

(1) If T is an index set of numbers, then
T x �� X

could be the listing of all the American presidents in chronological order. It
does turn out that the map is not injective – Cleveland was both the 22nd and
the 24th president.

If we want to ask who was the 16th president, the structure of the question
involves all three: the actual set, the actual listing, and a choice of index:

1
i

xi=xi

T
x

X

Lincoln derives by composing the index i = 16 and the list x of presidents.

(2) There are at least two uses of two-element sets:

Index sets and truth-value sets

Consider

1 •

2 •

τ
• 1

• 2

f
•

•

•• •• •• •
•• •• •••

set of
all
tennis
players

1 = “best”, 2 = “second best”

The one that used to be the second-best tennis player could become the best;
encode that by noting that there is an endomapping (or self-mapping) τ that
interchanges the two denominations. The list f ′ that is correct today can be the
reverse of the list f that was true yesterday if an “upset” match occurred; i.e.
we could have f ′ = f τ .

A similar sort of thing happens also on the side of the possible properties of
the elements of X :

X
V Vf τ•

••
•
•

•
•

•

•
true

false

•

•

true

false
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which results in

X
V•

••
•
•

•
•

•

•
true

false

In this case we could also compose with the τ , but now it would instead be τ

following f (which is written τ f ). This is called logical negation since it transforms
f into not-f, i.e. (not-f )(x) = not-f(x). The composite property is the property of
not having the property f . Often in the same discussion both reparameterization of
lists and logical or arithmetic operations on properties occur, as suggested in the
following diagram:

T
x

  

V

T ′ X

f

V ′

If we have a list x of elements and a property f , then the composite f x can be
thought of in two equally good ways. Because V represents values, we can think of
this f x as just a property of elements of T ; for example, given the listing x of the
presidents, the property f of their being Democrats becomes a property of indices.
But f x could also be considered as a list (of truth values). The two concepts thus
reduce to the same in the special case T �� V , giving

LIST TRUTH VALUES PROPERTY INDICES

or of or = or of or
FAMILY QUANTITIES MEASUREMENT PARAMETERS

Of course, the words for T (indices/parameters) and the words for V (truthval-
ues/quantities) only refer to structure, which is “forgotten” when T, V are abstract
sets (but which we will soon “put back in” in a more conscious way); we mention
this fact mainly to emphasize its usefulness (via specific x and f ) even when the
structure forgotten on X itself was of neither of those kinds.

Exercise 1.17
Consider

S = Set of socks in a drawer in a dark room
V = {white, black}
f = color

How big must my “sampler” T be in order that for all injective x, f x is not
injective (i.e., at least two chosen socks will be “verified” to have the same color)?
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T V

Sobjective

subjective

x f=color

♦

1.6 Generalized Elements

Consider the following three related statements (from Sections 1.2 and 1.4):

(1) Element is a special case of mapping;
(2) Evaluation is a special case of composition;
(3) Evaluation of a composite is a special case of the associative law of composition.

Statement (2) in one picture is

1
a b

A
f

B

(that is to say, f a = b) in which a, b are elements considered as a special case of
the commutativity of the following in which a, b are general mappings:

T
a b

A
f

B

“Taking the value” is the special case of composition in which T is taken to be 1.
For statement (3), recall that the associative law applies to a situation in which

we have in general three mappings:

T
a

g(fa) = (gf)a

fa

C

A
f

gf

B

g

We can compute the triple composite in two ways: We can either form f a and
follow that by g, getting g( f a), or we can first form g f (g following f ) and consider
a followed by that, obtaining what we call (g f )a; the associative law of composition
says that these are always equal for any three mappings a, f, g.


