
The Object Primer
Second Edition

The Application Developer’s Guide to

Object Orientation and the UML

Scott W. Ambler

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, VIC 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Capt Town 8001, South Africa

http://www.cambridge.org

Published in association with SIGS Books

© Cambridge University Press 2001

All rights reserved.

This book is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, no reproduction of any part may
take place without the written permission of Cambridge University Press.

Any product mentioned in this book may be a trademark of its company.

First edition published by SIGS Books and Multimedia in 1995
First edition published by Cambridge University Press in 1998
Reprinted 1998, 1999
Second edition published 2001

Design by Kevin Callahan and Andrea Cammarata
Composition by Andrea Cammarata
Cover design by Jean Cohn and Andrea Cammarata

Printed in the United States of America

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data available.

ISBN 0 521 78519 7 paperback

Foreword xvii

Preface xix

Acknowledgments xxiii

Chapter 1 • Introduction 1

1.1 The Structured Paradigm versus the Object-Oriented Paradigm 2
1.2 How Is This Book Organized? 3
1.3 How to Read This Book 5
1.4 What You Have Learned 7

Chapter 2 • Object Orientation: A New Software Paradigm 9

2.1 The Potential Benefits of Object Orientation 10
2.1.1 Increased Reusability 10
2.1.2 Increased Extensibility 10
2.1.3 Improved Quality 11
2.1.4 Financial Benefits 12
2.1.5 Increased Chance of Project Success 12
2.1.6 Reduced Maintenance Burden 15
2.1.7 Reduced Application Backlog 17
2.1.8 Managed Complexity 19

2.2 The Potential Drawbacks of OO 20
2.3 Objects Are Here to Stay 22

Contents

ix

2.4 Object Standards 23
2.5 The Object-Oriented Software Process 23
2.6 What You Have Learned 26
2.7 Review Questions 28

Chapter 3 • Gathering User Requirements 31

3.1 Putting Together a Requirements Modeling Team 34
3.1.1 Choosing Good Subject-Matter Experts 38
3.1.2 Choosing Good Facilitators 39
3.1.3 Choosing Good Scribes 40

3.2 Fundamental Requirements Gathering Techniques 40
3.2.1 Interviewing 40
3.2.2 Brainstorming 42

3.3 Essential Use Case Modeling 44
3.3.1 A Picture Says 1,000 Words: Drawing Use Case Diagrams 45
3.3.2 Identifying Actors 48
3.3.3 Documenting a Use Case 50
3.3.4 Use Cases: Essential versus System 52
3.3.5 Identifying Use Cases 56
3.3.6 Modeling Different Logic Flows: Alternate Courses of Action 61

3.4 Essential User Interface Prototyping 63
3.4.1 An Example Essential User-Interface Model 67
3.4.2 Ensuring System Usability 71
3.4.3 User Interface-Flow Diagramming 72

3.5 Domain Modeling with Class Responsibility Collaborator (CRC) Cards 74
3.5.1 Preparing to CRC Model 77
3.5.2 Finding Classes 77
3.5.3 Finding Responsibilities 82
3.5.4 Defining Collaborators 85
3.5.5 Arranging the CRC Cards 89
3.5.6 The Advantages and Disadvantages of CRC Modeling 91

3.6 Developing a Supplementary Specification 95
3.6.1 Identifying Business Rules 95
3.6.2 Identifying Nonfunctional Requirements and Constraints 97

3.7 Identifying Change Cases 98
3.7.1 Documenting Change Cases 99
3.7.2 The Advantages of Change Cases 100

3.8 Tips for Organizing a Modeling Room 101
3.9 Requirements Tips and Techniques 102
3.10 What You Have Learned 105

3.10.1 The ABC Bank Case Study 105
3.11 Review Questions 108

Chapter 4 • Ensuring Your Requirements Are Correct:
Requirements Validation Techniques 109

4.1 Testing Early and Often 111
4.2 Use Case Scenario Testing 114

4.2.1 The Steps of the Use Case Scenario Testing Process 114

x The Object Primer

4.2.2 Creating Use Case Scenarios 116
4.2.3 Acting Out Scenarios 119
4.2.4 The Advantages of Use Case Scenario Testing 126
4.2.5 The Disadvantages of Use Case Scenario Testing 127

4.3 User Interface Walkthroughs 128
4.4 Requirements Reviews 128
4.5 What You Have Learned 131
4.6 Review Questions 131

Chapter 5 • Understanding The Basics: Object-Oriented Concepts 133

5.1 New and Old Concepts Together 134
5.2 OO Concepts from a Structured Point-of-View 136
5.3 Objects and Classes 138
5.4 Attributes and Methods 140
5.5 Abstraction, Encapsulation, and Information Hiding 143

5.5.1 Abstraction 143
5.5.2 Encapsulation 144
5.5.3 Information Hiding 144
5.5.4 An Example 145
5.5.5 Why This Is Important 145

5.6 Inheritance 146
5.6.1 Modeling Inheritance 147
5.6.2 Inheritance Tips and Techniques 148
5.6.3 Single and Multiple Inheritance 150
5.6.4 Abstract and Concrete Classes 152

5.7 Association 152
5.7.1 Modeling Associations 153
5.7.2 How Associations Are Implemented 157

5.8 Aggregation 158
5.8.1 Modeling Aggregation 158
5.8.2 Aggregation Tips and Techniques 160

5.9 Collaboration 160
5.9.1 Messages 161
5.9.2 Collaboration Tips and Techniques 163

5.10 Persistence 165
5.10.1 Persistence Tips and Techniques 166
5.10.2 Persistent Memory: The Object Space 167
5.10.3 Object Databases (ODBs) 167

5.11 Persistent versus Transitory Associations 168
5.11.1 Persistent Associations 169
5.11.2 Transitory Associations: Dependencies 169

5.12 Coupling 170
5.12.1 Coupling Tips and Techniques 171

5.13 Cohesion 172
5.14 Polymorphism 173

5.14.1 An Example: The Poker Game 173
5.14.2 Polymorphism at the University 174

5.15 Interfaces 175

Contents xi

5.16 Components 176
5.17 Patterns 178
5.18 What You Have Learned 179
5.19 Review Questions 180

Chapter 6 • Determining What to Build: Object-Oriented Analysis 181

6.1 System Use Case Modeling 185
6.1.1 Writing System Use Cases 186
6.1.2 Reuse in Use Case Models: <<extend>>, <<include>>,

and Inheritance 190
6.1.3 Good Things to Know About Use Case Modeling 193
6.1.4 Use Case Modeling Tips and Techniques 195

6.2 Sequence Diagrams: From Use Cases to Classes 197
6.2.1 How to Draw Sequence Diagrams 204
6.2.2 Why and When Should You Draw Sequence Diagrams? 207
6.2.3 How to Document Sequence Diagrams 207
6.2.4 A Good Thing to Know About Sequence Diagrams 207

6.3 Conceptual Modeling: Class Diagrams 208
6.3.1 Modeling Classes, Attributes, and Methods 213
6.3.2 Modeling Associations 216
6.3.3 Modeling Dependencies 220
6.3.4 Introducing Reuse Between Classes via Inheritance 220
6.3.5 Modeling Aggregation Associations 222
6.3.6 Modeling Association Classes 224
6.3.7 Documenting Class Models 225
6.3.8 Conceptual Class Modeling Tips 227

6.4 Activity Diagramming 229
6.4.1 How to Draw Activity Diagrams 230
6.4.2 How to Document Activity Diagrams 232

6.5 User Interface Prototyping 232
6.5.1 Determining the Needs of Your Users 232
6.5.2 Building the Prototype 234
6.5.3 Evaluating the Prototype 234
6.5.4 Determining If You Are Finished 234
6.5.5 Good Things to Understand About Prototyping 235
6.5.6 Prototyping Tips and Techniques 235

6.6 Evolving Your Supplementary Specification 237
6.6.1 The Object Constraint Language 237

6.7 Applying Analysis Patterns Effectively 238
6.7.1 The Business Entity Analysis Pattern 238
6.7.2 The Contact Point Analysis Pattern 239
6.7.3 The Advantages and Disadvantages of Patterns 240

6.8 User Documentation 242
6.8.1 Types of User Documentation 242
6.8.2 How to Write User Documentation 243

6.9 Organizing Your Models with Packages 245
6.10 What You Have Learned 246
6.11 Review Questions 246

xii The Object Primer

Chapter 7 • Determining How to Build Your System:
Object-Oriented Design 249

7.1 Layering Your Models—Class Type Architecture 254
7.1.1 The User-Interface Layer 256
7.1.2 The Controller/Process Layer 256
7.1.3 The Business/Domain Layer 260
7.1.4 The Persistence Layer 260
7.1.5 The System Layer 261

7.2 Class Modeling 262
7.2.1 Inheritance Techniques 263
7.2.2 Association and Dependency Techniques 266
7.2.3 Aggregation and Composition Techniques 270
7.2.4 Modeling Methods During Design 272
7.2.5 Modeling Attributes During Design 281
7.2.6 Introducing Interfaces Into Your Model 286
7.2.7 Class Modeling Design Tips 289

7.3 Applying Design Patterns Effectively 293
7.3.1 The Singleton Design Pattern 294
7.3.2 The Façade Design Pattern 295
7.3.3 Tips for Applying Patterns Effectively 295

7.4 State Chart Modeling 296
7.4.1 How to Draw a State Diagram 299
7.4.2 When and Why Should You Draw State Diagrams? 300
7.4.3 State Diagrams and Inheritance 301

7.5 Collaboration Modeling 301
7.5.1 Drawing Collaboration Diagrams 303
7.5.2 Collaboration and Inheritance 304
7.5.3 When Should You Draw Collaboration Diagrams? 305

7.6 Component Modeling 306
7.6.1 How to Develop a Component Model 306
7.6.2 Implementing a Component 312

7.7 Deployment Modeling 312
7.7.1 How to Develop a Deployment Model 313
7.7.2 When Should You Create Deployment Models? 315

7.8 Relational Persistence Modeling 316
7.8.1 Keys and Object Identifiers 316
7.8.2 The Basics of Mapping Objects to RDBs 324
7.8.3 Mapping Associations, Aggregation, and Composition 329
7.8.4 Drawing Persistence Models 333
7.8.5 When Should You Develop Persistence Models? 334

7.9 User Interface Design 335
7.9.1 User-Interface Design Principles 335
7.9.2 Techniques for Improving Your User-Interface Design 336
7.9.3 User-Interface Flow Diagramming 339
7.9.4 User-Interface Design Standards and Guidelines 340

7.10 Design Tips 341
7.11 What You Have Learned 344
7.12 Review Questions 344

7.12.1 The Bank Case Study Six Months Later 346

Contents xiii

Chapter 8 • Object-Oriented Testing 347

8.1 What Is Programming? 350
8.2 From Design to Java Code 352

8.2.1 Implementing a Class In Java 354
8.2.2 Declaring Instance Attributes In Java 356
8.2.3 Implementing Instance Methods In Java 358
8.2.4 Implementing Static Methods and Attributes in Java 360
8.2.5 Implementing Constructors 364
8.2.6 Encapsulating Attributes with Accessors 366
8.2.7 Implementing Inheritance In Java 372
8.2.8 Implementing Interfaces In Java 372
8.2.9 Implementing Associations, Aggregation,

and Composition In Java 377
8.2.10 Implementing Dependencies 384
8.2.11 Implementing Collaboration in Java 385
8.2.12 Implementing Business Rules 385

8.3 From Design to Persistence Code 386
8.3.1 Strategies for Implementing Persistence Code 387
8.3.2 Defining and Modifying Your Persistence Schema 389
8.3.3 Creating, Retrieving, Updating, and Deleting Data 389
8.3.4 Implementing Behavior in a Relational Database 391

8.4 Programming Tips 393
8.4.1 Techniques for Writing Clean Code 393
8.4.2 Techniques for Writing Effective Documentation 396
8.4.3 Miscellaneous 398

8.5 What You Have Learned 401
8.6 Review Questions 401

Chapter 9 • Object-Oriented Testing 403

9.1 Overcoming Misconceptions About Object-Oriented Testing 404
9.1.1 Misconception #1: With Objects You Do Less Testing 405
9.1.2 Misconception #2: Structured Testing Techniques Are Sufficient 406
9.1.3 Misconception #3: Testing the User Interface Is Sufficient 406

9.2 Full Lifecycle Object-Oriented Testing (FLOOT) 406
9.2.1 Regression Testing 407
9.2.2 Quality Assurance 408
9.2.3 Testing Your Requirements, Analysis, and Design Models 409
9.2.4 Testing Your Source Code 412
9.2.5 Testing Your System in its Entirety 418
9.2.6 Testing by Users 420

9.3 From Test Cases to Defects 422
9.4 What You Have Learned 424
9.5 Review Questions 425

Chapter 10 • Putting It All Together: Software Process 427

10.1 What Is So Different About Object-Oriented Development? 429
10.2 What Is a Software Process? 430
10.3 Why Do You Need a Software Process? 431

xiv The Object Primer

10.4 From Waterfall/Serial Development… 432
10.5 …to Iterative Development… 433
10.6 …and Incremental Development 435
10.7 The Development Process Presented in This Book 437
10.8 Process Patterns of the Object-Oriented Software Process (OOSP) 438
10.9 The Unified Process 442
10.10 Other Processes 444

10.10.1 eXtreme Programming (XP) 444
10.10.2 The Microsoft Solutions Framework (MSF) 448
10.10.3 The OPEN Process 449
10.10.4 Catalysis 449

10.11 When to Use Objects 450
10.12 When Not to Use Objects 451
10.13 What You Have Learned 452
10.14 Review Questions 453

Chapter 11 • Where to Go From Here 455

11.1 The Post-2000 (P2K) Environment 456
11.1.1 New Software Strategies 456
11.1.2 Enabling Technologies 457
11.1.3 Leading-Edge Development Techniques 459
11.1.4 Modern Software Processes 461
11.1.5 Object Programming Languages 462
11.1.6 Internet Development Languages 465

11.2 Skills for Specific Positions 466
11.2.1 Business Analyst 466
11.2.2 IT Senior Manager 466
11.2.3 Object Modeler 467
11.2.4 Persistence Modeler 467
11.2.5 Persistence Administrator 468
11.2.6 Programmer 468
11.2.7 Project Manager 468
11.2.8 Quality Assurance Engineer 469
11.2.9 Software Architect 469
11.2.10 Test Engineer 470

11.3 Continuing Your Learning Process 470
11.3.1 Take General Introductory Training 471
11.3.2 Gain Hands-on Experience 471
11.3.3 Obtain Mentoring 471
11.3.4 Work in a Learning Team 473
11.3.5 Read, Read, Read 473
11.3.6 Take Advanced Training 474

11.4 What You Have Learned 474
11.5 Parting Words 474

Glossary 475

References and Recommended Reading 499

Index 505

Contents xv

Developers are good at building systems right.

What we’re not good at is building the right system.

What You Will Learn in This Chapter

What is object orientation?
The difficulties encountered with traditional development methods

How this book is organized
How to read this book

Why You Need to Read This Chapter

To understand why you should consider embracing object-oriented techniques,
you need to understand the challenges of the structured paradigm and how the

object paradigm addresses them.

Introduction

Chapter 1

1

This book describes the object-oriented (OO) paradigm, a development
strategy based on the concept that systems should be built from a collec-
tion of reusable components called objects. Instead of separating data and
functionality, as is done in the structured paradigm, objects encompass
both. While the object-oriented paradigm sounds similar to the struc-
tured paradigm, as you will see in this book, it is actually quite different.
A common mistake that many experienced developers make is to assume
they have been “doing objects” all along, just because they have been
applying similar software-engineering principles. The reality is you must
recognize that objects are different so you can start your learning experi-
ence successfully.

1.1 The Structured Paradigm versus the Object-
Oriented Paradigm

The structured paradigm is a development strategy based on the concept
that a system should be separated into two parts: data (modeled using a
data/persistence model) and functionality (modeled using a process
model). In short, using the structured approach, you develop applica-
tions in which data is separate from behavior in both the design model
and in the system implementation (that is, the program).

On the other hand, as you see in Figure 1-1, the main concept behind
the object-oriented paradigm is that instead of defining systems as two
separate parts (data and functionality), you now define systems as a col-
lection of interacting objects. Objects do things (that is, they have func-
tionality) and they know things (they have data). While this sounds
similar to the structured paradigm, it really isn’t.

Consider the design of an information system for a university. Taking
the structured approach, you would define the layout of a database and
the design of a program to access that data. In the database would be
information about students, professors, rooms, and courses. The program
would enable users to enroll students in courses, assign professors to
teach courses, schedule courses in certain rooms, and so on. The program
would access and update the database, in effect supporting the daily
business of the school.

Now consider the university information system from an object-
oriented perspective. In the real world, there are students, professors,
rooms, and courses. All of these things would be considered objects. In

2 The Object Primer

Paradigm. (pronounced para-dime) An overall strategy or viewpoint for doing
things. A paradigm is a specific mindset.

D E F I N I T I O N

the real world, students know things (they have names, addresses, birth
dates, telephone numbers, and so on) and they do things (enroll in
courses, drop courses, and pay tuition). Professors also know things (the
courses they teach and their names) and they do things (input marks and
make schedule requests). From a systems perspective, rooms know things
(the building they’re in and their room number) and should be able to
do things, too (such as tell you when they are available and enable you
to reserve them for a certain period of time). Courses also know things
(their title, description, and who is taking the course) and should be able
to do things (such as letting students enroll in them or drop them).

To implement this system, we would define a collection of classes (a class
is a generic representation of similar objects) that interact with each other.
For example, we would have “Course,” “Student,” “Professor,” and “Room”
classes. The collection of these classes would make up our application,
which would include both the functionality (the program) and the data.

As you can see, the OO approach results in a completely different view
of what an application is all about. Rather than having a program that
accesses a database, we have an application that exists in what is called
an object space. The object space is where both the program and the data
for the application reside. I discuss this concept in further detail in Chap-
ter 5 but, for now, think of the object space as virtual memory.

1.2 How Is This Book Organized?

The Object Primer covers leading-edge OO techniques and concepts that
have been proven in the development of real-world applications. It covers
in detail why you should learn this new approach called object orientation,
requirements techniques, such as use cases and CRC modeling, OO

For individuals,
OO is a whole new
way to think.
For organizations,
OO requires a
complete change
in its system
development
culture.

Chapter 1 • Introduction 3

Data

Functions
and

Procedures

A Structured Application

Object
Object

Object Object

An Object Application

Figure 1-1.
Comparing the
structured and
object-oriented
paradigms

concepts, OO analysis and design using the UML modeling techniques,
OO programming, OO testing, and the OO software process. The book
ends with a discussion of how to continue your learning process, including
descriptions of common object-oriented technologies and techniques you
might want to consider applying on software projects.

Figure 1-2 depicts the organization of The Object Primer, showing the
individual chapters and the relationships between them. Table 1-1 sum-
marizes the contents of each chapter. On the left side of the diagram are
the chapters that describe the fundamental activities of the software
process, such as gathering requirements, object-oriented analysis, and
object-oriented programming. The arrows between the boxes represent
the general relationships between the chapters: you see the chapters
describing gathering requirements, validating requirements, and object-
oriented analysis are closely related to one another. Chapter 9 covers
object-oriented testing and describes testing techniques that should be
used to validate your analysis, design, and programming efforts. Along
the right-hand side of Figure 1-2 are listed several “supporting” chapters,
chapters that present material that is critical to your understanding of
the object-oriented paradigm.

The Object Primer
covers everything
you need to know to
get you started in
OO development.

4 The Object Primer

Class. A template from which objects are created (instantiated). Although in
the real world Doug, Wayne, and Bill are all “student objects,” we would model
the class “Student” instead.

Object space. The memory space, including all accessible permanent storage,
in which objects exist and interact with one another.

Object. A person, place, thing, concept, event, screen, or report. Objects both
know things (that is, they have data) and they do things (that is, they have
functionality).

Object-oriented paradigm. A development strategy based on the concept of
building systems from reusable components called objects.

OO. An acronym used interchangeably for two terms: Object-oriented and
object orientation. For example, when we say OO programming, we really
mean object-oriented programming. When we say this is a book that describes
OO, we really mean this it is a book that describes object orientation.

D E F I N I T I O N S

Unified Modeling Language (UML). The definition of a standard modeling
language for object-oriented software, including the definition of a modeling
notation and the semantics for applying it as defined by the Object Manage-
ment Group (OMG).

D E F I N I T I O N

1.3 How to Read This Book

Programmers, Designers, and Project Managers

Read the entire book, cover to cover. It’s tempting to skip to Chapter 5,
which overviews object-oriented concepts, and start reading from there,
but that would be a major mistake. Chapter 5 builds on many of the
ideas presented in the first four chapters; therefore, reading ahead is not
to your advantage.

Business Analysts and User Representatives

Chapters 3 and 4 are written specifically for you, describing in detail the
techniques for gathering and validating the user requirements for an OO
application. Business analysts should also read Chapter 5, which

Chapter 1 • Introduction 5

Gather
Requirements

(Chapter 3)

Validate
Requirements

(Chapter 4)

Object-Oriented
Concepts

(Chapter 5)

Object-Oriented
Analysis

(Chapter 6)

Object-Oriented
Design

(Chapter 7)

Object-Oriented
Software Process

(Chapter 10)

Where To Go From
Here

Chapter 11

Object-Oriented
Programming

(Chapter 8)

Object-Oriented
Testing

(Chapter 9)

Object-Oriented
Paradigm

(Chapter 2)

Figure 1-2.
The organization of
this book

6 The Object Primer

Table 1-1. The material contained in each chapter

Chapter Description

2: A New Software Paradigm Discussion of the advantages and disadvantages of object ori-
entation, why objects are here to stay, and an overview of the
software process.

3: Gathering Requirements Description of requirements gathering techniques, including
use cases, change cases, CRC modeling, interviewing, and
user interface prototyping. A discussion of how the tech-
niques work together is included.

4: Validating Requirements Description of requirements validation techniques such as use
case scenario testing and requirements walkthroughs.

5: Object-Oriented Concepts Description of the fundamental concepts of object orienta-
tion, including inheritance, polymorphism, aggregation, and
encapsulation.

6: Object-Oriented Analysis Description of common object-oriented analysis techniques
such as sequence diagrams and class diagrams. A description
of how to make the transition from requirements to analysis is
presented, as well as how all the techniques fit together.

7: Object-Oriented Design Description of common object-oriented design techniques
such as class diagrams, state chart diagrams, collaboration
diagrams, and persistence models. A description of how to
make the transition from analysis to design is presented, as
well as how the techniques fit together.

8: Object-Oriented Programming Overview of common object-oriented programming tips and
techniques. A discussion of how to make the transition from
design to coding is presented.

9: Object-Oriented Testing Overview of the Full Lifecycle Object-Oriented Testing (FLOOT)
methodology and techniques.

10: Object-Oriented Software Process Overview of the Object-Oriented Software Process (OOSP)
and the enhanced lifecycle of the Unified Process.

11: Where to Go From Here Discussion of what you need to do to continue your OO
learning process, including a description of leading object
technologies and techniques such as Java, Enterprise Java-
Beans (EJB), C++, and component-based development.

describes the fundamental concepts of object orientation, and Chapter 6,
which describes OO analysis techniques. Both groups should also read
Chapter 10, which describes the overall software process for object-
oriented software—this will help put the overall effort into context for
you and give you a greater appreciation of how software is developed,
maintained, and supported.

Students

Like the first group of people, you should also read this book from cover
to cover. Furthermore, you should read this book two or three weeks
before your midterm test on object orientation, and not the night before
the exam. This stuff takes a while to sink in (actually it takes much
longer than a few weeks, but there’s only so much time in a school term).

1.4 What You Have Learned

The object-oriented paradigm is a software development strategy based
on the idea of building systems from reusable components called objects.
As you saw in Figure 1-1, the primary concept behind the object-oriented
paradigm is, instead of defining systems as two separate parts (data and
functionality), you now define systems as a collection of interacting
objects. Objects do things (that is, they have functionality) and they
know things (that is, they have data).

Chapter 1 • Introduction 7

Full lifecycle object-oriented testing (FLOOT). A testing methodology for
object-oriented development that comprises testing techniques that, taken
together, provide methods to verify that your application works correctly at
each stage of development.

D E F I N I T I O N

Your requirements define what is requested to be built.

Your analysis defines what will be built.

Determining What to
Build: Object-Oriented

Analysis

Chapter 6

181

What You Will Learn In This Chapter

How to develop a system use case model from an essential use case model
How to develop sequence diagrams

How to develop a conceptual class model from a domain model
How to develop activity diagrams

How to develop a user interface prototype
How to evolve your supplementary specification

How to apply the Object Constraint Language (OCL)
How to apply analysis patterns

How to write user documentation
How to apply packages on your diagrams

Why You Need to Read This Chapter

Your requirements model, although effective for understanding what your users
want to have built, is not as effective at understanding what will be built.

Object-oriented analysis techniques, such as system use case modeling, sequence
diagramming, class modeling, activity diagramming, and user interface

prototyping are used to bridge the gap between requirements and system design.

The purpose of analysis is to understand what will be built. This is similar
to requirements gathering, described in Chapter 3, the purpose of which
is to determine what your users want to have built. The main difference
is that the focus of requirements gathering is on understanding your
users and their potential usage of the system, whereas the focus of analy-
sis shifts to understanding the system itself.

Figure 6-1 depicts the main artifacts of your analysis efforts and the
relationships between them. The solid boxes indicate major analysis arti-
facts, whereas the dashed boxes represent your major requirements arti-
facts. As with the previous Figure 3-1, the arrows represent “drives”
relationships; for example, you see that information contained in your
CRC model affects information in your class model and vice versa. Figure
6-1 has three important implications. First, analysis is an iterative process.

Requirements
engineering
focuses on
understanding
users and their
usage, whereas
analysis focuses
on understanding
what needs to be
built.

182 The Object Primer

Essential
Use Case

Model

Business Rules

CRC Model

Essential
User Interface

Prototype

User Interface
Flow Diagram

Sequence
Diagram

Class Model
(Analysis)

Use Case
Model

Activity
Diagram

User Interface
Prototype

Figure 6-1.
Overview of analysis
artifacts and their
relationships

Second, taken together, requirements gathering and analysis are highly
interrelated and iterative. As you see in Chapter 7, which describes object-
oriented design techniques, analysis and design are similarly interrelated
and iterative. Third, the “essential” models, your essential use case model
and your essential user interface prototype, evolve into corresponding
analysis artifacts—respectively, your use case model and user interface
prototype. What isn’t as obvious is that your Class Responsibility Collabo-
rator (CRC) model evolves into your analysis class model.

Your use case model describes how your users work with your system,
reflecting the business rules pertinent to your system, as well as aspects
of your user interface model. You can use either Unified Modeling Lan-
guage (UML) sequence diagrams or UML activity diagrams to flesh out
and verify the logic contained in your use cases. Furthermore, you see
that sequence diagrams act as a bridge to your class model, which depicts
the static structure of the classes from which your system will be built.
Your user interface model, including your user interface prototype and
your user interface flow diagram (see Chapter 3), also drives changes to
your class model.

An important concept to note about Figure 6-1, and similarly Figures
7-1 and 8-1, is that every possible “drives” relationship is not shown. For
example, as you are developing your use case model, most likely you will
realize you are missing a feature in your user interface, yet a relationship
doesn’t exist between these two artifacts. From a pure/academic point of
view, when you realize your use case model conflicts with your user-
interface model, you should first consider what the problem is, update
your use case model appropriately, propagate the change to your essen-
tial use case model, and then to your essential user interface model, and,
finally, into your user interface model. Yes, you may, in fact, take this
route. Just as likely, and probably more so, is that you will, instead,
update both your use case model and user interface model together, and
then propagate the changes to the corresponding requirements artifacts.
This is an important aspect of iterative development. You don’t necessar-
ily work in a defined order; instead, your work reflects the relationships
between the artifacts you evolve over time.

A second important concept is the difference between a model and a
diagram. A diagram is a picture—typically consisting of bubbles con-
nected by lines documented with labels—that depicts an abstraction of
a portion or an aspect of a system. A model is also an abstraction,
although it is more robust because it consists of zero or more diagrams,
plus associated documentation. For example, a class model is composed
of a UML class diagram and the specifications of the classes and associa-
tions depicted on that diagram, whereas a CRC model is a collection of
CRC cards.

Analysis is an
iterative process.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 183

184 The Object Primer

Activity diagram. A UML diagram used to model high-level business processes or the transitions
between states of a class (in this respect, activity diagrams are effectively specializations of state chart
diagrams).

Class diagram. Shows the classes of a system and the associations between them.

Class model. A class diagram and its associated documentation.

Class Responsibility Collaborator (CRC) card. A standard index card that has been divided into
three sections: one indicating the name of the class the card represents, one listing the responsibilities
of the class, and the third listing the names of the other classes with which this one collaborates to ful-
fill its responsibilities.

Class Responsibility Collaborator (CRC) model. A collection of CRC cards that model all or part
of a system.

Diagram. A visual representation of a problem or solution to a problem.

Essential use case. A simplified, abstract, generalized use case that captures the intentions of a user
in a technology and implementation independent manner.

Essential use case model. A use case model comprised of essential use cases.

Essential user interface prototype. A low-fidelity prototype of a system’s user interface that mod-
els the fundamental, abstract characteristics of a user interface.

Model. An abstraction describing a problem domain and/or a solution to a problem domain. Tradi-
tionally models are thought of as diagrams plus their corresponding documentation, although non-
diagrams, such as interview results and collections of CRC cards, are also considered to be models.

Project stakeholder. Anyone who could be materially affected by the implementation of a new sys-
tem or application.

Prototype. A simulation of an item, such as a user interface or a system architecture, the purpose of which
is to communicate your approach to others before significant resources are invested in the approach.

Sequence diagram. A diagram that models the sequential logic, in effect, the time ordering of messages.

Use case. A sequence of actions that provide a measurable value to an actor.

Use case diagram. A diagram that shows use cases, actors, and their interrelationships.

Use case model. A model comprised of a use case diagram, use case definitions, and actor defini-
tions. Use case models are used to document the behavior requirements of a system.

User interface (UI). The user interface of software is the portion the user directly interacts with,
including the screens, reports, documentation, and software support (via telephone, electronic mail,
and so on).

User interface flow diagram. A diagram that models the interface objects of your system and the
relationships between them. Also know as an interface-flow diagram, a windows navigation diagram,
or an interface navigation diagram.

User interface prototype. A prototype of the user interface (UI) of a system. User interface proto-
types could be as simple as a hand-drawn picture or a collection of programmed screens, pages, or
reports.

D E F I N I T I O N S

6.1 System Use Case Modeling

During analysis, your main goal is to evolve your essential use cases into
system use cases. The main difference between an essential use case and a
system use case is, in the system use case, you include high-level imple-
mentation decisions. For example, a system use case refers to specific user-
interface components—such as screens, HTML pages, or reports—some-
thing you wouldn’t do in an essential use case. During analysis, you make
decisions regarding what will be built, information reflected in your use
cases, and, arguably, even how it will be built (effectively design). Because
your use cases refer to user interface components, and because your user
interface is worked on during design, inevitably design issues will creep
into your use cases. For example, a design decision is whether your user
interface is implemented using browser-based technology, such as HTML
pages or graphical user interface (GUI) technology such as Windows.
Because your user interface will work differently depending on the imple-
mentation technology, the logic of your system use cases, which reflect
the flow of your user interface, will also be affected.

What is a system use case model? Similar to essential use case models
described in Chapter 3, a system use case model is composed of a use case
diagram (Rumbaugh, Jacobson, and Booch, 1999) and the accompanying
documentation describing the use cases, actors, and associations. Figure 6-4,
which provides an example of a use case diagram, depicts a collection of
use cases, actors, their associations, a system boundary box (optional), and
packages (optional). A use case describes a sequence of actions that provide
a measurable value to an actor and is drawn as a horizontal ellipse. An
actor is a person, organization, or external system that plays a role in one
or more interactions with your system. Actors are drawn as stick figures.
Associations between actors and classes are indicated in use case diagrams,
a relationship exists whenever an actor is involved with an interaction
described by a use case. Associations also exist between use cases in system
use case models, a topic discussed in the following section, something that
didn’t occur in essential use case models. Associations are modeled as lines
connecting use cases and actors to one another, with an optional arrow-
head on one end of the line indicating the direction of the initial invoca-
tion of the relationship. The rectangle around the use cases is called the
system boundary box and, as the name suggests, it delimits the scope of
your system—the use cases inside the rectangle represent the functionality
you intend to implement. Finally, packages are UML constructs that enable
you to organize model elements (such as use cases) into groups. Packages
are depicted as file folders that can be used on any of the UML diagrams,
including both use case diagrams and class diagrams. Section 6.9 presents
strategies to apply packages effectively in your UML models.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 185

System use cases
reflect analysis
decisions and,
arguably, even
design decisions.

6.1.1 Writing System Use Cases

Writing system use cases is fairly straightforward. You begin with your
essential use cases and modify them to reflect the information captured
within your UML sequence diagrams (Section 6-2), your UML activity
diagrams (Section 6-7), your user interface prototype (Section 6-5), and
the contents of your evolved supplementary specification (Section 6-6).
You will also rework your use cases to reflect opportunities for reuse,
applying the UML stereotypes of <<extend>> and <<include>>, as well as
the object-oriented concept of inheritance, techniques covered next in
Section 6.1.2.

Consider the system use case presented in Figure 6-4. Notice how it is
similar to the essential use cases of Chapter 3, with the main exceptions
being the references to user interface elements and references to other use
cases. The use case has a basic course of action, which is the main start-to-
finish path the user will follow. It also has three alternate courses of
action, representing infrequently used paths through the use case, excep-
tions, or error conditions. Notice how I have added an identifier, some-
thing I could have done for the essential use cases depicted in Chapter 3.
It also has sections labeled “Extends,” “Includes,” and “Inherits From”
indicating the use cases, if any, with which this use case is associated. I
discuss what you need to put here in Section 6.1.1.

Until now, I have presented use cases in what is called narrative
style—the use case of Figure 6-2 is written this way—where the basic and
alternate courses of action are written one step at a time. A second style,
called the action-response style, presents use case steps in columns, one
column for each actor and a second column for the system. Figure 6-3
presents the basic course of action for Figure 6-4 rewritten using this
style. For the sake of brevity, I didn’t include rewritten versions of the
alternate courses. Of the two columns, one is for the Student actor and
one for the system, because only one actor is involved in this use case.

186 The Object Primer

Extend association. A generalization relationship where an extending use case
continues the behavior of a base use case. The extending use case accomplishes
this by inserting additional action sequences into the base use case sequence.
This is modeled using a use case association with the <<extend>> stereotype.

Include association. A generalization relationship denoting the inclusion of
the behavior described by a use case within another use case. This is modeled
using a use case association with the <<include>> stereotype Also known as a
“uses” or a “has-a” relationship.

D E F I N I T I O N S

Two common
styles exist for
writing use cases:
narrative style
and action-
response style.
Choose one style
and stick to it.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 187

Name: Enroll in Seminar
Identifier: UC 17
Description: Enroll an existing student in a seminar for which he is eligible.
Preconditions: The Student is registered at the University.
Postconditions: The Student will be enrolled in the course he wants if he
is eligible and room is available.
Extends: —
Includes: —
Inherits From: -—
Basic Course of Action:
1. The student wants to enroll in a seminar.
2. The student inputs his name and student number into the system via

“UI23 Security Login Screen.”
3. The system verifies the student is eligible to enroll in seminars at the

university, according to business rule “BR129 Determine Eligibility to
Enroll.”

4. The system displays “UI32 Seminar Selection Screen,” which indicates
the list of available seminars.

5. The student indicates the seminar in which he wants to enroll.
6. The system validates the student is eligible to enroll in the seminar,

according to the business rule “BR130 Determine Student Eligibility to
Enroll in a Seminar.”

7. The system validates the seminar fits into the existing schedule of the
student, according to the business rule “BR143 Validate Student Semi-
nar Schedule.”

8. The system calculates the fees for the seminar based on the fee pub-
lished in the course catalog, applicable student fees, and applicable
taxes. Apply business rules “BR 180 Calculate Student Fees” and
“BR45 Calculate Taxes for Seminar.”

9. The system displays the fees via “UI33 Display Seminar Fees Screen.”
10. The system asks the student whether he still wants to enroll in the

seminar.
11. The student indicates he wants to enroll in the seminar.
12. The system enrolls the student in the seminar.
13. The system informs the student the enrollment was successful via

“UI88 Seminar Enrollment Summary Screen.”
14. The system bills the student for the seminar, according to business rule

‘BR100 Bill Student for Seminar.”
15. The system asks the student if he wants a printed statement of the

enrollment.
16. The student indicates he wants a printed statement.
17. The system prints the enrollment statement “UI89 Enrollment Sum-

mary Report.”
18. The use case ends when the student takes the printed statement.

Figure 6-2.
“Enroll in seminar”
written in narrative
style

continued on page 90

The advantage of the action-response style is it is easier to see how actors
interact with the system and how the system responds. The disadvantage
is, in my opinion, it is a little harder to understand the flow of logic of
the use case. This is particularly true for alternate courses and their refer-
ences to other courses of action. The style you choose is a matter of pref-
erence. What’s important is that your team and, ideally, your
organization selects one style and sticks to it.

I want to point out an important style issue pertaining to Steps 2 and
3 of the use case of Figure 6-2. I could just as easily have defined a pre-
condition that the student has already logged in to the system and has
been verified as an eligible student. Actually, this should be two precon-
ditions: one for being logged in and one for being eligible (this way, the
preconditions are cohesive). To support the first precondition, being
logged in, I would be tempted to write a “Log Into System” use case that
would describe the process of logging in and validating the user, perhaps
including alternate courses for obtaining a login identifier. This use case
would be a candidate for inclusion in your common, enterprise model
because it is a feature that should belong to your organization’s shared
technical architecture. Cross-project issues such as this are among the
topics I cover in Process Patterns (Ambler, 1998b) and More Process Patterns
(Ambler, 1999), the third and fourth books in this series. The second pre-
condition, the one for being eligible to enroll, likely doesn’t need its own
use case, but I would still reference the appropriate business rule.

188 The Object Primer

Alternate Course A: The Student is Not Eligible to Enroll in Seminars
A.3. The system determines the student is not eligible to enroll in seminars.
A.4. The system informs the student he is not eligible to enroll.
A.5. The use case ends.

Alternate Course B: The Student Does Not Have the Prerequisites
B.6. The system determines the student is not eligible to enroll in the sem-
inar he has chosen.
B.7. The system informs the student he does not have the prerequisites.
B.8. The system informs the student of the prerequisites he needs.
B.9. The use case continues at Step 4 in the basic course of action.

Alternate Course C: The Student Decides Not to Enroll in an Available
Seminar
C.4. The student views the list of seminars and doesn’t see one in which
he wants to enroll.
C.5. The use case ends.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 189

Student

1. The student wants to enroll in a seminar.

2. The student inputs his name and student number
into the system via “UI23 Security Login Screen.”

5. The student indicates the seminar in which she
wants to enroll.

11. The student indicates she wants to enroll in the
seminar.

16. The student indicates she wants a printed
statement.

18. The use case ends when the student takes the
printed statement.

System

3. The system verifies the student is eligible to enroll
in seminars at the university, according to business
rule “BR129 Determine Eligibility to Enroll.”

4. The system displays “UI32 Seminar Selection
Screen,” which indicates the list of available seminars.

6. The system validates the student is eligible to
enroll in the seminar, according to the business
rule “BR130 Determine Student Eligibility to Enroll
in a Seminar.”

7. The system validates the seminar fits into the
existing schedule of the student, according to the
business rule “BR143 Validate Student Seminar
Schedule.”

8. The system calculates the fees for the seminar
based on the fee published in the course catalog,
applicable student fees, and applicable taxes.
Apply business rules “BR 180 Calculate Student
Fees” and “BR45 Calculate Taxes for Seminar.”

9. The system displays the fees via “UI33 Display
Seminar Fees Screen.”

10. The system asks the student whether she still
wants to enroll in the seminar.

12. The system enrolls the student in the seminar.

13. The system informs the student the enrollment
was successful via “UI88 Seminar Enrollment Sum-
mary Screen.”

14. The system bills the student for the seminar,
according to business rule “BR100 Bill Student for
Seminar.”

15. The system asks the student if she wants a
printed statement of the enrollment.

17. The system prints the enrollment statement
“UI89 Enrollment Summary Report.”

Figure 6-3.
Basic course of
action for “Enroll in
Seminar” written in
action-response style

6.1.2 Reuse in Use Case Models: <<extend>>, <<include>>,
and Inheritance

One of your goals during analysis is to identify potential opportunities
for reuse, a goal you can work toward as you are developing your use case
model. Potential reuse can be modeled through four generalization rela-
tionships supported by the UML use case models: extend relationships
between use cases, include relationships between use cases, inheritance
between use cases, and inheritance between actors.

6.1.2.1 Extend Associations Between Use Cases
An extend association, formerly called an extends relationship in the
UML v1.2 and earlier, is a generalization relationship where an extending
use case continues the behavior of a base use case. The extending use
case accomplishes this by conceptually inserting additional action
sequences into the base use case sequence. This enables an extending use
case to continue the activity sequence of a base use case when the appro-
priate extension point is reached in the base use case and the extension
condition is fulfilled. When the extending use case activity sequence is
completed, the base use case continues. In Figure 6-4, you see that the
use case “Enroll International Student in University” extends the use case
“Enroll in University;” the notation for doing so is simply a normal use
case association with the stereotype of <<extend>>. In this case, “Enroll
in University” is the base use case and “Enroll International Student in
University” is the extending use case.

An extending use case is, effectively, an alternate course of the base
use case. In fact, a good rule of thumb is you should introduce an
extending use case whenever the logic for an alternate course of action is
at a complexity level similar to that of your basic course of action. I also
like to introduce an extending use case whenever I need an alternate
course for an alternate course; in this case, the extending use case would
encapsulate both alternate courses. Many use case modelers avoid the use
of extend associations as this technique has a tendency to make use case
diagrams difficult to understand. My preference is to use extend associa-
tions sparingly. Note that the extending use case—in this case “Enroll
International Student in University”—would list “UC33 Enroll in Univer-
sity,” the base use case, in its “Extends” list.

Just as you indicate the point at which the logic of an alternate course
replaces the logic of a portion of the basic course of action for a use case,
you need to be able to do the same thing for an extending use case. This is
accomplished through the use of an extension point, which is simply a
marker in the logic of a base use case indicating where extension is
allowed. Figure 6-5 presents an example of how an extension point would
be indicated in the basic course of action of the “Enroll in University” use

190 The Object Primer

You can indicate
potential
opportunities for
reuse on your use
case models

The <<extend>>
stereotype is used
to indicate an
extend association.

Extending use cases
are often introduced
to resolve
complexities of
alternate courses.

Extension points
are placed in base
use cases to
indicate where the
logic of the
extending use case
replaces that of
the base use case.

case. Notice how the identifier and the name of the use case is indicated.
If several use cases extended this one from the same point, then each one
would need to be listed. A condition statement, such as “Condition:
Enrollee is an international student,” could have been indicated immedi-
ately following the name of the use but, in this example, it was fairly
obvious what was happening.

6.1.2.2 Include Associations Between Use Cases
A second way to indicate potential reuse within use case models exists in
the form of include associations. An include association, formerly known
as a uses relationship in the UML v1.2 and earlier, is a generalization rela-
tionship denoting the inclusion of the behavior described by another use
case. The best way to think of an include association is that it is the invo-
cation of a use case by another one. In Figure 6-4, notice that the use case

Figure 6-4.
The opportunities
for reuse in use case
models

Chapter 6 • Determining What to Build: Object-Oriented Analysis 191

Student

Registrar

Enroll in
University

International
Student

Enroll
International Student

in University

<<extend>>

Enroll in
Seminar

<<include>>

Enroll Family
Member in
University

4. The system displays “UI43 Student Information Entry.” [Extension Point:
UC34 Enroll International Student In University.]
5. The student…

Figure 6-5.
Documenting an
extension point
within a use case

An include
association is the
equivalent of a
function call.

“Enroll in University” includes the use case “Enroll in Seminar”; the nota-
tion for doing so is simply a normal use case association with the stereo-
type of <<include>>. Figure 6-6 presents an example of how you would
indicate where the use case is included in the logic of the including use
case. Similar to calling a function or invoking an operation within source
code, isn’t it? Object-oriented programming is covered in Chapter 8.

You use include associations whenever one use case needs the behav-
ior of another. Introducing a new use case that encapsulates similar logic
that occurs in several use cases is quite common. For example, you may
discover that several use cases need the behavior to search for and then
update information about students, indicating the potential need for an
“Update Student Record” use case included by the other use cases.

As you would expect, the use case “Enroll in University” should list
“UC17 Enroll in Seminar” in its “Includes” list. Why should you bother
maintaining an “Includes” and an “Extends” list in your use cases? The
answer is simple: Your use cases should stand on their own; you shouldn’t
expect people to have your use case diagram in front of them. Yes, it
would be nice if everyone has access to the use case diagram because it
also contains this information, but the reality is that sometimes you use
different tools to document each part of your model. For example, your
diagrams could be drawn using a drawing package and your use cases
documented in a word processor. Some of your project stakeholders may
have access to the word processor you are using, but not the drawing
package. The main disadvantage of this approach is you need to main-
tain these two lists in parallel with the diagram, the danger being they
may become unsynchronized.

192 The Object Primer

Base use case. A use case extended by another via an extend association.

Extending use case. A use case that extends another use case via an extend
association.

Extension point. A marker in a use case where extension is allowed.

D E F I N I T I O N S

8. The student indicates the seminar(s) she wants to take via the use case
UC 17 Enroll in Seminar.
9. The student…

Figure 6-6.
Indicating the
inclusion of a
use case

6.1.2.3 Inheritance
Use cases can inherit from other use cases, offering a third opportunity to
indicate potential reuse. Figure 6-4 depicts an example of this, showing
that “Enroll Family Member in University” inherits from the “Enroll In
University” use case. Inheritance between use cases is not as common as
either the use of extend or include associations, but it is still possible. The
inheriting use case would completely replace one or more of the courses
of action of the inherited use case. In this case, the basic course of action
is completely rewritten to reflect that new business rules are applied when
the family member of a professor is enrolling at the university. Family
members are allowed to enroll in the school, regardless of the marks they
earned in high school; they don’t have to pay any enrollment fees, and
they are given top priority for enrollment in the university.

Inheritance between use cases should be applied whenever a single condi-
tion, in this case, the student is a family member of a professor, would result
in the definition of several alternate courses. Without the option to define
an inheriting use case, you need to introduce an alternate course to rework
the check of the student’s high-school marks, the charging of enrollment
fees, and for prioritization of who is allowed to enroll in the given semester.

The inheriting use case is much simpler than the use case from which
it inherits. It should have a name, description, and identifier, and it
should also indicate from which use case it inherits in the “Inherits
From” section. In sections that you replace, you may need to rewrite the
preconditions, postconditions, or courses of action. If something is not
replaced, then leave that section blank, assuming it is inherited from the
parent use case (you might want to put text, such as “see parent use
case,” in the section).

The fourth opportunity for indicating potential reuse within use case
models occurs between actors: An actor on a use case diagram can inherit
from another actor. An example of this is shown in Figure 6-4, where the
“International Student” actor inherits from “Student.” An international stu-
dent is a student, the only difference being he or she is subject to different
rules and policies (for instance, the international student pays more in
tuition). The standard UML notation for inheritance, the open-headed
arrow, is used and the advice presented about the appropriate use of inheri-
tance still applies: It should make sense to say the inheriting actor is or is
like the inherited actor.

6.1.3 Good Things to Know About Use Case Modeling

An important thing to understand about use case models is that the asso-
ciations between actors and use cases indicate the need for interfaces.
When the actor is a person, then to support the association, you need to
develop user interface components, such as screens and reports. When

Chapter 6 • Determining What to Build: Object-Oriented Analysis 193

Use cases may
inherit from other
use cases.

Apply inheritance
between use cases
when a single
condition would
result in several
alternate courses.

Actors may inherit
from other actors.

Associations
between actors
and use cases
imply the need for
interfaces.

the actor is an external system, then you need to develop a system inter-
face, perhaps a data file transfer or a real-time online link to the external
system. For example, in the “Enroll in Seminar” use case of Figure 6-2,
the Student actor interacts with the system via several major UI compo-
nents, particularly “UI23 Security Login Screen,” “UI32 Seminar Selec-
tion Screen,” “UI33 Display Seminar Fees Screen,” “UI88 Seminar
Enrollment Summary Screen,” and “UI89 Enrollment Summary Report.”

Second, use cases are often written under the assumption that you can
exit at any time. For example, in the middle of the “Enroll in Seminar”
use case, the student may decide to give up and try again later or the sys-
tem may crash because the load on it is too great. The description of the
use case doesn’t include these as alternate courses because it would
greatly increase the complexity of the use case without adding much
value. Instead, it is assumed, if one of these events occurs, that the use
case simply ends and the right thing will happen. However, your subject
matter experts (SMEs) may want to define nonfunctional requirements
that describe how situations such as this should be handled.

Third, in my opinion, use case modeling has received far more atten-
tion than it actually deserves. Yes, it is a useful technique but no, it isn’t
the be-all-and-end-all of requirements and analysis modeling. You saw in
Chapter 3 that essential use case modeling is one technique of several
you can use to gather requirements and, as you see in this chapter, it is
also one of several techniques to perform object-oriented analysis. Don’t
let the marketing hype of CASE tool vendors and object-oriented consul-
tants deceive you into thinking everything should be “use case driven.”
Use case modeling is merely one of many important techniques you
should have in your modeling toolkit.

Fourth, although the reuse techniques—extend associations, include
associations, and inheritance—are useful, don’t overuse them. Include
associations and, to a lesser degree, extend associations, lead to func-
tional decomposition within your use case model. The problem is use
cases are not meant to describe functions within your source code; they
are meant to describe series of actions that offer value to actors. A good
rule of thumb to use is if you are able to describe a use case with a single
sentence, then you have likely decomposed it too much, something that
occurs when you apply include associations too often. Another rule of
thumb is, if you have more than two levels of include associations, for
example, if use case A includes use case B, which includes use case C,
then two levels of include exist, and then you are in danger of functional
decomposition. The same can be said of extend associations between use
cases, as well as inheritance.

194 The Object Primer

You should be able
to exit from a use
case at any time.

Beware of the “use
case driven” hype
of consultants and
tool vendors.

Include, extend,
and inheritance
associations
between use cases
can lead to
functional
decomposition if
you are not
careful.

6.1.4 Use Case Modeling Tips and Techniques

In this section, I want to share a collection of tips and techniques I have
found useful over the years to improve the quality of my system use case
models.

1. Write from the point-of-view of the actor in the active voice.
Use cases should be written in the active voice: “The student
indicates the seminar,” instead of in the passive voice, “The sem-
inar is indicated by the student.” Furthermore, use cases should
be written from the point-of-view of the actor. After all, the pur-
pose of use cases is to understand how your users will work with
your system.

2. Write scenario text, not functional requirements. A use case
describes a series of actions that provide value to an actor; it
doesn’t describe a collection of features. For example, the use
case of Figure 6-2 describes how a student interacts with the sys-
tem to enroll in a seminar. It doesn’t describe what the user
interface looks like or how it works. You have other models to
describe this important information, such as your user interface
model and your supplementary specifications. Object-oriented
analysis is complex, which is why you have several models to
work with, and you should apply each model appropriately.

3. A use case is neither a class specification nor a data specifica-
tion. This is the sort of information that should be captured by
your conceptual model, described in Section 6.3, which in the
object world is modeled via a UML class model. You are likely to
refer to classes described in your conceptual model; for example,
the “Enroll in Seminar” use case includes concepts, such as semi-
nars and students, both of which would be described by your
conceptual model. Once again, use each model appropriately.

4. Don’t forget the user interface. System use cases often refer to
major user interface (UI) elements, often called boundary or sim-
ply user interface items, and sometimes minor UI elements as
appropriate.

5. Create a use case template. As you can see in Figure 6-2, use
cases include a fair amount of information, information that can
easily be documented in a common format. You should consider
either developing your own template based on what you have
learned in this book or adopting an existing one you have either
purchased with an object modeling tool or downloaded from the
Internet.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 195

6. Organize your use case diagrams consistently. Common prac-
tice is to draw inheritance and extend associations vertically,
with the inheriting/extending use case drawn below the parent/
base use case. Similarly, include associations are typically drawn
horizontally. Note that these are simple rules of thumb, rules
that, when followed consistently, result in diagrams that are eas-
ier to read.

7. Don’t forget the system responses to the actions of actors.
Your use cases should describe both how your actors interact
with your system and how your system responds to those inter-
actions. With the “Enroll in Seminar” use case, had the system
not responded when the student indicated she wanted to enroll
in a seminar, I suspect the student would soon become discour-
aged and walk away. The system wasn’t doing anything to help
the student fulfill her goals.

8. Alternate courses of action are important. Start with the happy
path, the basic course of action, but don’t forget the alternate
courses as well. Alternates courses will be introduced to describe
potential usage errors, as well as business logic errors and excep-
tions. This important information is needed to drive the design
of your system, so don’t forget to model it in your use cases.

9. Don’t get hung up on <<include>> and <<extend>> associa-
tions. I’m not quite sure what happened, but I’ve always thought
the proper use of include and extend associations, as well as uses
and extends associations in older versions of the Unified Model-
ing Language (UML), were never described well. As a result, use
case modeling teams had a tendency to argue about the proper
application of these associations, wasting an incredible amount of
time on an interesting, but minor, portion of the overall model-
ing technique. I even worked at one organization that went so far
as to outlaw the use of the <<include>> and <<extend>> stereo-
types, an extreme solution that had to be reversed after a few
weeks when the organization realized it still needed these con-
cepts, even though the organization hadn’t come to a full agree-
ment as to their proper use. Anyway, I believe Section 6.1.2 does a
good job explaining how to apply these associations effectively.

10. Use cases drive user documentation. The purpose of user docu-
mentation is to describe how to work with your system. Each use
case describes a series of actions taken by actors using your sys-
tem. In short, use cases contain the information from which you
can start writing your user documentation. For example, the

196 The Object Primer

“how to enroll in a seminar” section of your system’s user docu-
mentation could be written using the “Enroll in Seminar” use
case as its base.

11. Use cases drive presentations. Part of software development is
communicating your work efforts with project stakeholders, result-
ing in the occasional need to give presentations. Because use cases
are written from the point-of-view of your users, they contain valu-
able insight into the type of things your users are likely to want to
hear about in your presentations. In other words, use cases often
contain the logic from which to develop presentation scripts.

6.2 Sequence Diagrams: From Use Cases to Classes

Sequence diagrams (Rumbaugh, Jacobson, and Booch, 1999) are used to
model the logic of usage scenarios. A usage scenario is exactly what its name
indicates—the description of a potential way your system is used. The logic
of a usage scenario may be part of a use case, perhaps an alternate course. It
may also be one entire pass through a use case, such as the logic described
by the basic course of action or a portion of the basic course of action, plus
one or more alternate scenarios. The logic of a usage scenario may also be a
pass through the logic contained in several use cases. For example, a student
enrolls in the university, and then immediately enrolls in three seminars.
Figure 6-7 models the basic course of action for the “Enroll in Seminar” use
case. Sequence diagrams model the flow of logic within your system in a
visual manner, enabling you both to document and validate your logic, and
are commonly used for both analysis and design purposes.

The boxes across the top of the diagram represent classifiers or their
instances, typically use cases, objects, classes, or actors. Because you can
send messages to both objects and classes, objects respond to messages
through the invocation of an operation, and classes do so through the
invocation of static operations, it makes sense to include both on

Chapter 6 • Determining What to Build: Object-Oriented Analysis 197

Major user interface element. A large-grained item, such as a screen, HTML
page, or report.

Minor user interface element. A small-grained item, such as a user input
field, menu item, list, or static text field.

Supplementary specification. An artifact where all requirements not contained
in your use case model, user interface model, or domain model are documented.

D E F I N I T I O N S

Sequence
diagrams enable
you to visually
model the logic of
your system.

Objects, classes,
and actors are
depicted in
sequence
diagrams.

sequence diagrams. Because actors initiate and take an active part in
usage scenarios, they are also included in sequence diagrams. Objects
have labels in the standard UML format “name: ClassName,” where
“name” is optional (objects that haven’t been given a name on the dia-
gram are called anonymous objects). Classes have labels in the format
“ClassName,” and actors have names in the format “Actor Name”—both
UML standards as well. For example, in Figure 6-7, you see the Student
actor has the name “A Student” and is labeled with the stereotype
<<actor>>. The instance of the major UI element representing “UI32
Seminar Selection Screen,” is an anonymous object with the name
“:SeminarSelector” and the stereotype <<UI>>. The “Student” class is
indicated on the diagram, the box with the name “Student,” because the
static message “isEligible(name, studentNumber)” is sent to it. More on
this later. The instance of “Student” was given a name “theStudent”
because it is used in several places as a parameter in a message, whereas
the instance of the “StudentsFees” class didn’t need to be referenced any-
where else in the diagram and, thus, could be anonymous.

The dashed lines hanging from the boxes are called object lifelines, rep-
resenting the life span of the object during the scenario being modeled.
The long, thin boxes on the lifelines are method-invocation boxes indicat-
ing that processing is being performed by the target object/class to fulfill a
message. The X at the bottom of a method-invocation box is a UML con-
vention to indicate that an object has been removed from memory, typi-
cally the result of receiving a message with the stereotype of <<destroy>>.

Messages are indicated as labeled arrows, when the source and target of
a message is an object or class the label is the signature of the method
invoked in response to the message. However, if either the source or target
is a human actor, then the message is labeled with brief text describing
the information being communicated. For example, the “:EnrollInSemi-
nar” object sends the message “isEligibleToEnroll(theStudent)” to the
instance of “Seminar.” Notice how I include both the method’s name and
the name of the parameters, if any, passed into it. Figure 6-7 also indicates
that the Student actor provides information to the “:SecurityLogon”
object via the messages labeled “name” and “student number” (these
really aren’t messages; they are actually user interactions). Return values
are optionally indicated as using a dashed arrow with a label indicating
the return value. For example, the return value “theStudent” is indicated
coming back from the “Student” class as the result of invoking a message,
whereas no return value is indicated as the result of sending the message
“isEligibleToEnroll(theStudent)” to “seminar.” My style is not to indicate
the return values when it’s obvious what is being returned, so I don’t clut-
ter my sequence diagrams (as you can see, sequence diagrams get compli-
cated fairly quickly).

198 The Object Primer

Messages are
indicated by
labeled arrows,
and return values
by dashed and
labeled arrows.

Fi
gu

re
 6

-7
.

A
 U

M
L

se
q

ue
nc

e
di

ag
ra

m
 fo

r
th

e
ba

si
c

co
ur

se
 o

f a
ct

io
n

fo
r

Fi
gu

re
 6

-2

A
 S

tu
d
e
n
t

<
<

a
c
to

r>
>

:S
e
c
u
ri

ty
L
o
g
o
n

<
<

U
I>

>
S

tu
d
e
n
t

:S
e
m

in
a
rS

e
le

c
to

r
<

<
U

I>
>

s
e
m

in
a
r:

S
e
m

in
a
r

th
e
S

tu
d
e
n
t

:S
tu

d
e
n
t

s
c
h
e
d
u
le

:S
tu

d
e
n
tS

c
h
e
d
u
le

:S
tu

d
e
n
tF

e
e
s

:F
e
e
D

is
p
la

y
<

<
U

I>
>

2.
 S

tu
de

nt
 in

pu
ts

 n
am

e
an

d
nu

m
be

r

3.
 S

ys
te

m
 v

er
ifi

es
 s

tu
de

nt

4.
 S

ys
te

m
 d

is
pl

ay
s

se
m

in
ar

 li
st

5.
 S

tu
de

nt
s

pi
ck

s
se

m
in

ar

6.
 S

ys
te

m
 d

et
er

m
in

es
 e

lig
ib

ili
ty

 to
 e

nr
ol

l

7.
 S

ys
te

m
 d

et
er

m
in

es
 s

ch
ed

ul
e

fit

8.
 S

ys
te

m
 c

al
cu

la
te

s
fe

es

9.
 S

ys
te

m
 d

is
pl

ay
s

fe
es

10
. S

ys
te

m
 v

er
ifi

es
 s

tu
de

nt
 w

is
he

s
to

 e
nr

ol
l

11
. S

tu
de

nt
s

in
di

ca
te

s
ye

s.

12
. S

ys
te

m
 e

nr
ol

ls
 s

tu
de

nt
 in

 s
em

in
ar

E
n

ro
ll
 I
n

 S
e
m

in
a
r

B
a
s
ic

 C
o

u
rs

e
 o

f
A

c
ti

o
n

S
D

 #
:

U
C

1
7
-0

1

is
E

lig
ib

le
(n

a
m

e
,
s
tu

d
e
n
tN

u
m

b
e
r)

:E
n
ro

llI
n
S

e
m

in
a
r

<
<

c
o
n
tr

o
lle

r>
>

1.
 S

tu
de

nt
 in

di
ca

te
s

w
is

h
to

 e
nr

ol
l

w
is

h
 t
o
 e

n
ro

ll
<

<
c
re

a
te

>
>

th
e
S

tu
d
e
n
t

 n

a
m

e

s
tu

d
e
n
t
n
u
m

b
e
r X

<
<

d
e
s
tr

o
y
>

>

<
<

c
re

a
te

>
>

s
e
le

c
ti
o
n

is
E

lig
ib

le
T
o
E

n
ro

ll(
th

e
S

tu
d
e
n
t)

q
u
a
lif

ic
a
ti
o
n
s
()

g
e
tS

c
h
e
d
u
le

()

th
e
S

tu
d
e
n
t

d
e
te

rm
in

e
F

it
(s

e
m

in
a
r)

c
a
lc

u
la

te
F

e
e
s
(s

e
m

in
a
r,

 t
h
e
S

tu
d
e
n
t)

<
<

c
re

a
te

>
>

ve
ri

fi
c
a
ti
o
n

e
n
ro

llS
tu

d
e
n
t(

th
e
S

tu
d
e
n
t)

X

X

<
<

c
re

a
te

>
>

N
o

te
:

N
e
e
d

 t
o

fl
e
s
h

 t
h

is
 m

e
s
s
a
g

e

o
u

t
m

o
re

.

Messages fulfill the logic of the steps of the use case, summarized
down the left-hand side of the diagram. Notice how the exact wording of
the use case steps isn’t used because the steps are often too wordy to fit
nicely on a diagram. What is critical is that the step numbers correspond
to those in the use case and that the general idea of the step is apparent
to the reader of the diagram.

Notice the use of stereotypes throughout the diagram. For the boxes, I
applied the stereotypes <<actor>>, <<controller>>, and <<UI>> indicating
that they represent an actor, a controller class, or a user interface (UI)
class, respectively. For now, a controller class is a placeholder for one or
more classes that would be fleshed out during design (Chapter 7) to
implement the business logic of your system. As you see in Chapter 7,
you want to layer your system, separating your user interface logic, busi-
ness logic, system logic, and persistence logic away from each other.
Stereotypes are also used on messages. Common practice on UML dia-
grams is to indicate creation and destruction messages with the stereo-
types of <<create>> and <<destroy>>, respectively. For example, you see
that the “:SecurityLogon” object is created in this manner (actually, this
message would likely be sent to the class that would then result in a
return value of the created object, so I cheated a bit). This object later

200 The Object Primer

Stereotypes may
be applied to
actors, objects,
classes, and
messages on
sequence
diagrams.

Anonymous object. An object appearing on the diagram that hasn’t been
given a name; instead, the label is simply an indication of the class, such as
“: Invoice.”

Classifier. A mechanism that describes behavioral or structural features. Classi-
fiers include use cases, classes, interfaces, and components.

Lifeline. Represents, in a sequence diagram, the life span of an object during
an interaction.

Method. Something a class or object does. A method is similar to a function or
procedure in structured programming and is often referred to as an operation
or member function in object development.

Message-invocation box. The long, thin, vertical boxes that appear on sequence
diagrams, which represent invocation of an operation on an object or class.

Signature. The combination of the name, parameter names (in order), and
name of the return value (if any) of a method.

Static method. A method that operates at the class level, potentially on all
instances of that class.

Stereotype. A stereotype denotes a common usage of a modeling element.
Stereotypes are used to extend the UML in a consistent manner.

D E F I N I T I O N S

destroys itself in a similar manner, presumably when the window is
closed. In Java and C++, methods that create objects are called construc-
tors, and in C++, methods that destroy objects are called destructors (Java
automatically manages memory, whereas C++ doesn’t, so Java doesn’t
require destructor methods).

I used a UML note; notes are basically free-form text that can be
placed on any UML diagram, to provide a header for the diagram, indi-
cating its title and identifier (as you may have noticed, I give unique
identifiers to everything). Notes are depicted as a piece of paper with the
top-right corner folded over. I also used a note to indicate future work
that needs to be done, either during analysis or design; in this diagram,
the “qualifications()” message likely represents a series of messages sent
to the student object. Common UML practice is to anchor a note to
another model element with a dashed line when appropriate, as you see
in Figure 6-7, with the note attached to the message.

When I developed the sequence diagram of Figure 6-7, I made several
decisions that could potentially affect my other models. For example, as I
modeled Step 10, I made the assumption (arguably, a design decision) that
the fee display screen also handled the verification by the student that the
fees were acceptable. This decision should be reflected by the user interface
prototype, the topic of Section 6.5, and verified by my SMEs. Sequence dia-
gramming is something you should be doing together with your SMEs,
particularly sophisticated ones who understand how to develop models
such as this. Also, as I was modeling Steps 2 and 3, I came to the realiza-
tion that students should probably have passwords to get into the system.
I brought this concept up with my SMEs and discovered I was wrong: the
combination of name and student number is unique enough for our pur-
poses and the university didn’t want the added complexity of password
management. This is an interesting decision that would be documented
in the supplementary specification, likely as a business rule, because it is
an operating policy of the university. By verifying this idea with my SMEs,
instead of assuming I knew better than everyone else, I avoided an oppor-
tunity for goldplating and, thus, reduced the work my team would need
to do to develop this system.

Regarding style issues for sequence diagramming, I prefer to draw mes-
sages going from left-to-right and return values from right-to-left,
although that doesn’t always work with complex objects/classes. I justify
the label on messages and return values, so they are closest to the arrow-
head. As mentioned earlier, I prefer not to indicate return values on
sequence diagrams to simplify the diagrams whenever possible. However,
equally valid is to decide always to indicate return values, particularly
when your sequence diagram is used for design instead of analysis (I like
my analysis diagrams to be as simple as possible and my design diagrams

Chapter 6 • Determining What to Build: Object-Oriented Analysis 201

Understand the
basic logic during
analysis, flesh out
the details during
design.

Notes can be used
to add free-form
text to any UML
diagram.

Verify modeling
decisions with
your SMEs.

to be as thorough as possible). During analysis, my goal is to understand
the logic and to ensure I have it right. During design, I then flesh out the
exact details, as the note reminds me to do with the “qualifications()”
message in Figure 6-7. I also prefer to layer the sequence diagrams from
left-to-right. I indicate the actors, then the controller class(es), and then
the user interface class(es), and, finally, the business class(es). During
design, you probably need to add system and persistence classes, which I
usually put on the right-most side of sequence diagrams. Laying your
sequence diagrams in this manner often makes them easier to read and
also makes it easier to find layering logic problems, such as user interface
classes directly accessing persistence classes (more on this in Chapter 7).

Interesting to note is the style of logic changed part way through the
sequence diagram of Figure 6-7. The user interface was handling some of
the basic logic at first—particularly the login—yet for selecting the semi-
nar, and then verifying it, the controller class did the work. This is actu-
ally a design issue. I wouldn’t get too worked up over this but, as always,
I suggest choosing one style for now and sticking to it.

Although Figure 6-7 models the logic, the basic course of action for the
“Enroll in Seminar” use case, how would you go about modeling alternate
courses? The most common way to do so is to create a single sequence dia-
gram for each alternate course, as you see depicted in Figure 6-8. This dia-
gram models only the logic of the alternate course, as you can tell by the
numbering of the steps on the left-hand side of the diagram. The header
note for the diagram indicates that it is an alternate course of action. Also
notice how the ID of this diagram includes that this is alternate course B,
yet another modeling rule of thumb I have found useful over the years.

202 The Object Primer

C++. A hybrid object-oriented programming language that adds object-oriented
features to the C programming language.

Constructor. A method, typically a static one, whose purpose is to instantiate
and, optionally, initialize an object.

Controller. A class that implements business/domain logic, coordinating sev-
eral objects to perform a task.

Destructor. A method whose purpose is to remove an object completely from
memory.

Goldplating. The addition of extraneous features to a system.

Java. An object-oriented programming language based on the concept of
“write once, run anywhere.”

Note. A modeling construct for adding free-form text to the UML diagrams.

D E F I N I T I O N S

The sequence diagram of Figure 6-8 is simpler than that of Figure 6-7;
this is generally the case of alternate courses. I modeled the return value
from the “isEligibleToEnroll(theStudent)” message because this is what
causes the alternate course to occur in the first place. This arguably points
to the need always to model return values in your sequence diagrams. I
still prefer to keep my diagrams as simple as possible, though, so I model
them only when the information is vital to my understanding of the
logic. I also chose to show the ineligibility notice as its own user- interface
element, once again bordering on a design decision that would need to be
reflected in the user interface prototype. I also modeled that the prerequi-
sites list is displayed as part of the seminar details user interface element,
which is more than the use case currently calls for. This implies that I
should verify the change with my SMEs because I have effectively
increased the requirements although, by doing so, I have likely indicated
an opportunity for both reuse and an overall simplification of the poten-

Chapter 6 • Determining What to Build: Object-Oriented Analysis 203

You may have heard terms such as dynamic modeling and static modeling
bantered about by other developers familiar with object-oriented modeling
techniques. You may even have heard arguments about the merits of each
style. Dynamic modeling techniques focus on identifying the behavior within
your system. These techniques include sequence diagramming and activity
diagramming (both of which are described in this chapter) and collaboration
diagramming, described in Chapter 7. Static modeling focuses on the static
aspects of your system, including the classes, their attributes, and the associations
between classes. Class models, described in this chapter, are the main artifact
of static modeling, as are persistence models, which are described in Chapter
7. Both dynamic and static modeling techniques are required to specify an
object-oriented system adequately, which makes the “dynamic modeling
versus static modeling” debates questionable at best.

T I P

Sequence
Diagrams Are
Dynamic

A Student
<<actor>>

:IneligibilityNotice
<<UI>>

seminar:Seminar:SeminarDetails
<<UI>>

B.6. System determines ineligibility to enroll

B.7. System informs the student of ineligibility

B.8. System informs the student of
prerequisites

B.9. Use case resumes at step 4

Enroll In Seminar

Alternate Course of

Action: Student Does

not Have Prerequisites

SD #: UC17-01B

:EnrollInSeminar
<<controller>>

<<create>>

isEligibleToEnroll(theStudent)

<<create>>

false

Figure 6-8.
A UML sequence
diagram for an
alternate course

tial design. As you can see with this example, the line between analysis
and design is fuzzy with object-oriented development; experienced devel-
opers new to objects can take time to get used to this. Finally, I left the
“Student” actor in the diagram, even though no direct interaction occurs
at this point because this actor is referred to in the steps of the use case.

6.2.1 How to Draw Sequence Diagrams

The following steps describe the fundamental tasks of sequence diagram-
ming, tasks you perform in an iterative manner.

1. Identify the scope of the sequence diagram. Begin by identify-
ing what you are modeling. Is it the basic course of action for a
single use case? A single alternate course? The combination of
the basic course of action and one or more alternate courses?
Logic from several use cases? Once you identify the scope of your
diagram, you should add a label at the top, using a note, indicat-
ing an appropriate title for the diagram and a unique identifier
for it. You may also want to include the date and also the names
of the authors of the diagram.

2. List the use case steps down the left-hand side. I like to start a
sequence diagram by writing a summary of the original use case
text in the left-hand margin, as you saw in Figure 6-7 and Figure
6-8. This logic is what you are modeling, so you might as well
have it on your diagram from the start. Rosenberg and Scott
(1999) point out this also provides valuable traceability informa-
tion between your use cases and sequence diagrams.

3. Introduce boxes for each actor. Introduce a box for each actor
across the top of your diagram. I prefer to put actors that repre-
sent humans and organizations on the left-hand side and those
that represent external systems on the right-hand side. Label
each box with the <<actor>> stereotype.

4. Introduce controller class(es). My style is to introduce at least
one controller class whose purpose is to mediate the logic
described by the use case steps. This business logic typically does-
n’t belong in your user interface classes. Instead, it should be
encapsulated by business classes (a controller class is a type of
business class). Later, during design, you will likely refactor this
logic into one or more classes to reflect issues with your chosen
implementation technologies. Label each box with the <<con-
troller>> stereotype.

204 The Object Primer

5. Introduce a box for each major UI element. Major user inter-
face elements, and minor ones for that matter, are implemented
as classes in object-oriented systems. Therefore, they should be
modeled as a box in a sequence diagram. My style is to list the UI
elements to the immediate right of the controller class(es). Label
each box with the <<UI>> stereotype.1

6. Introduce a box for each included use case. Although I didn’t
include this in an example, included use cases are treated just like
objects. Mark them with the stereotype <<use case>> and give them
a name in the format “id:Use case name,” such as “UC17:Enroll in
Seminar.” To indicate that the use case is being invoked by a step, I
simply send it a message with the stereotype of <<uses>>.

7. Identify appropriate messages for each use case step. Going one
step at a time, walk through the process logic for the scenario, iden-
tifying each message that needs to be sent and its destination. The
sequencing of the messages is implied on the diagram by the order
of the messages themselves, starting at the top-left corner of the
diagram. When you are drawing sequence diagrams, the important
task is to get the logic right; you effectively flesh out your logic as
you identify messages for each step. Also, don’t forget that an
object or class can send a message to itself, as you saw in Figure 6-7.

8. Add a method-invocation box for each invocation of a method.
Every time an object or class receives a message, a method is
invoked. To represent this, you should include a method-invocation
box to the lifeline of the target. The incoming message will be
received at the top of the box and, to fulfill the logic of the step, you
may find the target needs to send messages to other objects and
classes, which, in turn, invoke methods on those new targets. From
the box, messages may be sent to other objects that, in turn, invoke
methods within those targets. Eventually, this method will com-
plete; therefore, the method invocation box “stops” and, possibly, a
value is returned to the original sender of the message.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 205

1 Stereotypes in the UML typically begin with a lowercase letter. However, because I am
using the term “UI” for the stereotype label, instead of “user interface,” I have chosen
to capitalize it. Also, in Chapter 3, I was using the stereotype <<Actor>> instead of
<<actor>> on the Class Responsibility Collaborator (CRC) cards. I did this for two rea-
sons. First, CRC models are not part of the UML and, therefore, don’t have comply
with UML practices. Second, I did it to show you the world won’t end if you break the
rules a bit. I’ve lot track of the amount of time, easily in the hundreds of hours, that
I’ve wasted in conversations during modeling sessions over nitpicky issues such as this.
Your goal is to model your system accurately in a way that is understandable to the
people involved; whether you use <<Actor>> or <<actor>> as a stereotype is barely rele-
vant when the big picture is taken into consideration.

9. Add destruction messages where appropriate. At the end of a
method invocation, the target object may be destroyed. This is
common for transitory objects such as user interface elements
and for business objects deleted as the result of an operation.
Therefore, a message with the stereotype <<destroy>> should be
sent to the object and the method-invocation box labeled with
an X at its bottom. Sometimes an object will destroy itself, as you
saw in Figure 6-7.

10. Add your business classes and objects. As you identify mes-
sages you also need to identify targets for those messages, targets
that will inevitably be classes or objects. The appropriate classes
(objects are instances of classes) should be in your conceptual
model (if not, then you need to add them). Use the class names
from your conceptual model for the names of the classes in your
sequence diagrams (any business class that appears on a
sequence diagram should also appear in your conceptual model).
For now, don’t worry too much whether an object or a class
should be the target of a message. You can always rework your
diagram if you get it wrong at first. The important thing is to get
the fundamental idea correct, and then you can go back to per-
fect it later. Remember to layer your classes and objects as
described in previous steps. Also, you may find you need several
instances of the same class on a single sequence diagram. For
example, had I modeled a scenario in which a student enrolled
in three different seminars, then I would have included three
seminar objects in the diagram.

11. Update your class model. Because you are sequence diagram-
ming, you will identify new responsibilities for classes and objects,
and, sometimes, even for new classes. Remember, each message
sent to a class invokes a static method/operation on that class, an
operation that should appear on your class model. Similarly, each
message sent to an object invokes an operation on that object, an
operation that should also appear on your class model. Sequence
diagramming is a significant source for identifying behavior to be
modeled on your class model, the subject of Section 6.3.

12. Update your user interface model. As you work through the
logic of each scenario, you may discover you are missing features
in your user interface or you have modeled some features inap-
propriately. When you discover this, you should work together
with your SMEs to identify the proper way for your user interface
to work, the topic of Section 6.5.

206 The Object Primer

13. Update your use case model. As you are sequence diagram-
ming, you may find errors in your original use case logic, errors
that need to be fixed on both your sequence diagram(s) and in
your use case(s). As always, validate any use case changes with
your SMEs first.

6.2.2 Why and When Should You Draw Sequence Diagrams?

You want to draw sequence diagrams for several reasons. First and fore-
most, sequence diagrams are a great way to validate and flesh out your
logic (not that this should stop you from use case scenario testing, as
described in Chapter 4). Second, sequence diagrams are a great way to
document your design, at least from the point-of-view of use cases.
Third, sequence diagrams are a great mechanism for detecting bottle-
necks in your design. By looking at what messages are being sent to an
object, and by looking at roughly how long it takes to run the invoked
method, you quickly get an understanding of where you need to change
your design to distribute the load within your system. In fact, some CASE
tools even enable you to simulate this aspect of your software. Finally,
sequence diagrams often give you a feel for which classes in your applica-
tion are going to be complex, which, in turn, is an indication you may
need to draw state chart diagrams for those classes (UML state chart dia-
grams are described in Chapter 8).

6.2.3 How to Document Sequence Diagrams

I generally don’t develop documentation specific to sequence diagrams.
Sequence diagrams provide a bridge between your use cases and your
class model. Everything that is shown in a sequence diagram is docu-
mented in these models. For example, the steps depicted by the sequence
diagram are documented by your use cases. The boxes across the top of
the diagram are documented.

6.2.4 A Good Thing to Know About Sequence Diagrams

You need to do at least one sequence diagram for each use case and,
often, you will create several for each use case. Because the diagram
should match the narrative flow of the use case, Rosenberg and Scott

Chapter 6 • Determining What to Build: Object-Oriented Analysis 207

Transitory object. An object that is not saved to permanent storage.

D E F I N I T I O N

Sequence
diagrams are used
to test your design
and to document
use cases.

(1999) point out that if you are having problems getting started drawing
sequence diagrams for a use case, then you likely wrote the use case
incorrectly and should reconsider its logic. They also point out that
sequence diagramming is the primary vehicle for allocating behavior.

During analysis, you will begin to add solution-space objects to the
problem-domain objects (from your CRC model), including controller
and user interface objects. Furthermore, during design, Rosenberg and
Scott (1999) also point out that you will infrastructure objects such as
system and persistence objects, scaffolding, and other helper objects into
your models.

6.3 Conceptual Modeling: Class Diagrams

Class models (Rumbaugh, Jacobson, and Booch, 1999) are the mainstay
of object-oriented analysis and design. Before the UML, most methodolo-
gies called them object models instead of class models.2 Class models are
created by using many of the modeling concepts and notations discussed
in Chapter 5. Class models show the classes of the system, their interrela-
tionships (including inheritance, aggregation, and association), and the
operations and attributes of the classes. During analysis, you use class
models to represent your conceptual model, an expansion of the domain
model described in Chapter 3, because it shows greater detail and a wider
range of detail. Conceptual models are used to depict your detailed
understanding of the problem space for your system. During design, this
model is evolved further to include classes that address the solution
space, as well as the problem space.

The easiest way to begin conceptual modeling is to use your domain
model as a base. In this case, you will take your Class Responsibility Col-
laborator (CRC) model (Beck and Cunningham, 1989) and convert it
directly into a UML class diagram. CRC models show the initial classes of
a system, their responsibilities, and the basic relationships (in the form of
a list of collaborators) between those classes. While a CRC model pro-
vides an excellent overview of a system, it doesn’t provide the details

208 The Object Primer

Computer-aided system engineering (CASE) tool. Software that supports
the creation of models of software-oriented systems.

D E F I N I T I O N

2 In the original edition of this book, written in 1995, I argued for, and then used, the
term “class model,” instead of “object model,” for the simple reason that you use them
to model classes and their relationships, not objects.

needed to actually build it. Luckily, those details have been captured in
the notes taken down by the scribe(s) during CRC modeling. Figure 6-9
depicts the CRC model we developed in Chapter 3, the “SecurityLogon”
class identified in the sequence diagrams earlier has been introduced to
CRC model, and Figure 6-10 depicts the UML class diagram that would
be created based on that CRC model.

For each card in the CRC model, you create a concrete class in the class
diagram, with the exception of cards that represent actors (actors exist in the
real world). Notice how the names stayed the same (spaces were removed

Chapter 6 • Determining What to Build: Object-Oriented Analysis 209

Problem space. The scope of your business domain being addressed by your
system.

Solution space. The problem space being addressed by your system plus the
nondomain functionality required to implement your system.

D E F I N I T I O N S

Student

Name
Address
Phone number
Email address
Student number
Average mark received
Validate identifying info
Provide list of seminars
 taken

Enrollment
 Record

Enroll in Seminar <<UI>>

See the prototype
Enable seminar search
Display seminar list
Display seminar fees
Display professor info

Seminar
Professor

.

Professor

Name
Address
Phone number
Email address
Salary
Provide information
Seminars instructing

Seminar

Enrollment Record

Mark(s) received
Average to date
Final grade
Student
Seminar

Seminar

Transcript <<UI>>

See the prototype
Get student info
Get seminars student
 took
Determine average
 mark
Output self

Student
Seminar
Professor
Enrollment Record

Student <<Actor>>

Provide information
 about self
Request to enroll in
 seminar
Request Transcript

Enroll in Seminar
Transcript Seminar

Name
Seminar number
Fees
Waiting list
Enrolled students
Instructor
Add student
Drop student

Student
Professor

SecurityLogon <<UI>>

See the prototype
Request identifying
 info for student

Student

Figure 6-9.
A CRC model for
the university

from the names to follow the naming convention of ClassName). Next, the
collaborators on CRC cards indicate the need for an association, aggregation
association, or dependency between classes. I modeled dependencies
between user interface classes and the business classes with which they col-
laborate because user interface classes are transitory in nature, implying the
associations they are involved with are transitory and, hence, should be
modeled as dependencies. Whenever a collaboration occurred between two
business classes, I modeled an association for now. As you see later, these
associations may, in fact, prove to be aggregation associations but, for now, it
is good enough simply to have modeled the line.

Consider the associations modeled in Figure 6-10. The “waiting list”
association between “Seminar” and “Student” was added, modeling the
similarly named responsibility on the “Seminar” CRC card. I could have
added an attribute in the “Seminar” class called “waitingList” but,
instead, chose to model it as an association because that is what it actu-
ally represents: that seminar objects maintain a waiting list of zero or
more student objects. In Chapter 5, I showed that associations are imple-
mented as a combination of attributes and operations so, frankly, you
may as well add the attribute to the model now and get it over with. The
“waiting list” association is unidirectional because there was neither a

210 The Object Primer

Seminar
name
seminarNumber
fees
waitingList

addStudent(student)
dropStudent(student)

Student
name
address
phoneNumber
emailAddress
studentNumber
averageMark
isEligible (name,
studentNumber)
getSeminarsTaken()

EnrollmentRecord

marksReceived

getAverageToDate()
getFinalMark()

EnrollInSeminar
<<UI>>

searchForSeminar()
displaySeminarList()
displaySeminarFees()
displayProfessor()

Transcript
<<UI>>

getStudent()
getSeminars()
determineAverage()
output()

SecurityLogon
<<UI>>

acceptStudentID()
acceptStudentName()
validateStudent()

Professor

name
address
phoneNumber
emailAddress
salary
getInformation()

enrolled
in

enrolled
in

instructs

on waiting list

Figure 6-10.
A UML class diagram
based on the CRC
model

Collaborations from
a user interface
class implies a
dependency, whereas
collaborations
from business/
domain classes
imply either
association or
aggregation
between the classes.

corresponding collaborator indicated by the “Student” card nor did a
responsibility indicate that the “Student” card had knowledge of being
on a waiting list. I modeled an “enrolled in” association between the
“Student” and “EnrollmentRecord” classes to support the similarly
named responsibility on the “Student” CRC card. For this association, it
appears student objects know what enrollment records they are involved
with, recording the seminars they have taken in the past, as well as the
seminars in which they are currently involved. This association would be
traversed to calculate their student object’s average mark and to provide
information about seminars taken. There is also an “enrolled in” associa-
tion between “EnrollmentRecord” and “Seminar” to support the capabil-
ity for student objects to produce a list of seminars taken. The “instructs”
association between the “Professor” class and the “Seminar” class is bidi-
rectional because professor objects know what seminars they instruct
(the Seminar’s instructing responsibility) and seminar objects know who
instructs them (the Instructor responsibility).

Other than the previously noted exceptions, the responsibilities on
the CRC cards were modeled either as attributes or methods of the corre-
sponding classes. The “Student” class is interesting because I chose to
model the “Average mark received” responsibility as an attribute and not
a method. How this responsibility is actually implemented is a design
decision, one I don’t need to make now. I have made a good guess as to
how to implement this responsibility and moved on to other issues. It is
too early in the modeling process to worry about nitpicky issues like this:
The “Student” class could go away, based on another design decision
(unlikely, but…), so why invest a lot of effort getting the details right
when close enough works just as well? My style is to name attributes and
methods using the formats attributeName and methodName(parameter-
Name), respectively, which happen to be the common naming conven-
tions for both Java (Vermeulen et al., 2000) and C++.

Also notice, in Figure 6-10, how I haven’t modeled the visibility of the
attributes and methods to any great extent. Visibility is an important
issue during design but, for now, it can be ignored. Also notice, I haven’t
defined the full method signatures for the classes. Yes, I have indicated
the parameters, but not their type. And I haven’t indicated the return
value from each method either, another task I typically leave to design.

Now consider the user interface classes. I didn’t bother to list the
attributes because they are modeled well enough by the prototype and

Chapter 6 • Determining What to Build: Object-Oriented Analysis 211

Concrete class. A class that has objects instantiated from it.

D E F I N I T I O N

Associations are
bidirectional only
if they need to be
traversed in both
directions.

Responsibilities
are usually
modeled as
attributes or
methods.

eventual user interface design. The purpose of models is to describe your
system adequately, rarely to describe it thoroughly. Yes, I could create
detailed classes for each UI class in my model, but what value would that
be? It sounds like a lot of work for little return, particularly when more
than enough details are in the user interface model already. Also, as you
can see in Figure 6-10, the UI classes have made quite a mess of the dia-
gram, requiring the modeling of a lot of dependencies that add signifi-
cant clutter without communicating much valuable information. This
information could be better recorded as part of your user interface
model; a simple spreadsheet listing each major UI element and the busi-
ness classes on which they are dependent should be sufficient.

Figure 6-11 presents a revised version of Figure 6-10; the user interface
classes have been removed and the multiplicity of the associations have
been modeled. Based on what the SMEs tell you and on the information
contained in the notes your scribe(s) took as part of requirements gather-
ing, you should be able to make educated guesses at the multiplicities of
each association. In Figure 6-11, I was able to determine with certainty,
based on this information, the multiplicities for all but one association
and, for that one, I marked it with a note to myself. Notice my use of
question marks in the note. As mentioned in Chapter 5, my style is to
mark unknown information on my diagrams this way to remind myself
that I need to look into it.

In Figure 6-11, I also modeled a UML constraint, in this case “{ordered
FIFO},” on the association between “Seminar” and “Student.” The basic
idea is that students are put on the waiting list on a first-come, first-out
(FIFO) basis. In other words, the students are put on the waiting list in
order. UML constraints are used to model complex and/or important
information accurately in your UML diagrams. UML constraints are mod-
eled using the format “{constraint description}” format, where the con-
straint description may be in any format, including predicate calculus.
Fowler and Scott (1997) suggest that you focus on readability and under-
standability and, therefore, suggest using an informal description. Con-
straints are described in further detail in Section 6.6.1.

212 The Object Primer

Bidirectional association. An association that may be traversed in both directions.

Unidirectional association. An association that may be traversed in only one
direction.

Visibility. The level of access external objects have to an item, such as an
object’s attributes or methods, or even to a class itself.

D E F I N I T I O N S

Modeling user
interface classes on
class diagrams
often adds a lot of
clutter without
adding much
useful information.

Model complex
or important
concepts on your
UML diagrams
using OCL.

Once you have converted the information contained in your CRC
model into an initial UML class model, you are then ready to continue
fleshing out your model with added detail. Class models contain a
wealth of information and can be used for both the analysis and design
of systems. To create and evolve a class model, you need to model:

• Classes

• Methods

• Attributes

• Associations

• Dependencies

• Inheritance relationships

• Aggregation associations

• Association classes

6.3.1 Modeling Classes, Attributes, and Methods

An object, as defined previously, is any person, place, thing, concept, event,
screen, or report applicable to your system. Objects both know things (they
have attributes) and they do things (they have methods). A class is a repre-
sentation of an object and, in many ways, it is simply a template from

Chapter 6 • Determining What to Build: Object-Oriented Analysis 213

Student
name
address
phoneNumber
emailAddress
studentNumber
averageMark
isEligible (name,
studentNumber)
getSeminarsTaken()

EnrollmentRecord

marksReceived

getAverageToDate()
getFinalMark()

Seminar
name
seminarNumber
fees
waitingList

addStudent(student)
dropStudent(student)

Professor
name
address
phoneNumber
emailAddress
salary
getInformation()

0..* 0..*

1..*1 11..*

0..*

0..1

?Some seminars may

not have an instructor?

enrolled in enrolled in

on waiting list

instructs

{ordered, FIFO}

Figure 6-11.
The revised class
diagram

which objects are created. Classes form the main building blocks of an
object-oriented application. Two of the steps of CRC modeling included the
finding of classes and the finding of responsibilities. Classes represent a col-
lection of similar objects. For example, although thousands of students
attend the university, you would only model one class, called “Student,”
which would represent the entire collection of students.

Classes are modeled as rectangles with three sections: the top section for
the name of the class, the middle section for the attributes of the class, and
the bottom section for the methods of the class. The initial classes of your
model will be identified when you convert from your CRC model, as will
the initial attributes and methods. To describe a class, you define its attrib-
utes and methods. Attributes are the information stored about an object (or
at least information temporarily maintained about an object), while meth-
ods are the things an object or class does. For example, students have stu-
dent numbers, names, addresses, and phone numbers. Those are all
examples of the attributes of a student. Students also enroll in courses, drop
courses, and request transcripts. Those are all examples of the things a stu-
dent does, which get implemented (coded) as methods. You should think of
methods as the object-oriented equivalent of functions and procedures.

An important aspect of analysis is to model your classes to the appropri-
ate level of detail. Consider the “Student” class modeled in Figure 6-11,
which has an attribute called “address.” When you stop and think about it,
addresses are complicated things. They have complex data, containing
street and city information for example, and they potentially have behav-
ior. An arguably better way to model this is depicted in Figure 6-12. Notice
how the “Address” class has been modeled to include an attribute for each
piece of data it comprises and two methods have been added: one to verify
it is a valid address and one to output it as a label (perhaps for an envelope).
By introducing the “Address” class, the “Student” class has become more
cohesive. It no longer contains logic (such as validation) that is pertinent to
addresses. The “Address” class could now be reused in other places, such as
the “Professor” class, reducing your overall development costs. Further-
more, if the need arises to support students with several addresses—during
the school term, a student may live in a different location than his perma-
nent mailing address, such as a dorm—this is information the system may

214 The Object Primer

Use the terminology of your users in all your models. The purpose of
analysis is to understand the world of your users, not to foist your
artificial, technical terms on them. Remember, they’re the experts,
not you. In short, avoid geek-speak.

T I P

Use the Terminology of
Your Users

need to track. Having a separate class to implement addresses should make
the addition of this behavior easier to implement.

Similarly, the “Seminar” class of Figure 6-11 is refactored into the classes
depicted in Figure 6-13. Refactoring such as this is called class normalization
(Ambler, 1998a), a process in which you refactor the behavior of classes to
increase their cohesion and/or to reduce the coupling between classes. A
seminar is an offering of a course; for example, there could be five seminar
offerings of the course “CSC 148 Introduction to Computer Science.” The
attributes “name” and “fees” were moved to the “Course” class and
“courseNumber” was introduced. The “getFullName()” method concate-
nates the course number, “CSC 148,” and the course name, “Introduction
to Computer Science,” to give the full name of the course. This is called a
getter method, an operation that returns a data value pertinent to an
object. Although getter methods, and the corresponding setter methods,
need to be developed for a class, they are typically assumed to exist and are
therefore not modeled (particularly on conceptual class diagrams) so they
do not clutter your models. Figure 6-14 depicts “Course” from Figure 6-13
as it would appear with its getter and setter methods modeled. Setters and
getters are described in detail in Chapter 7.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 215

11

Address

street
city
state
postalCode
country

validate()
outputAsLabel()

Student

name
phoneNumber
emailAddress
studentNumber
averageMark

isEligible (name,
studentNumber)
getSeminarsTaken()

lives at

Figure 6-12.
The “Student” and
“Address” classes

0..* 1offering of
Course

name
courseNumber
fees

getFullName()

Seminar

seminarNumber
waitingList

addStudent(student)
dropStudent(student)

Figure 6-13.
Normalizing the
“Seminar” class

Figure 6-15 presents the class diagram that results3 when Figures 6-11,
6-12, and 6-13 are combined. Notice how “Professor””now references the
“Address” class, taking advantage of the work we did to improve the
“Student” class.

6.3.2 Modeling Associations

Objects are often associated with, or related to, other objects. For exam-
ple, as you see in Figure 6-15, several associations are between objects:
Students are on waiting list for seminars, professors instruct seminars,
seminars are an offering of courses, a professor lives at an address, and so
on. Associations are modeled as lines connecting the two classes whose
instances (objects) are involved in the relationship.

When you model associations in UML class diagrams, you show them as a
thin line connecting two classes, which was illustrated in Figure 5-9. Associa-
tions can become quite complex; consequently, you can depict some things
about them on your diagrams. Figure 5-9 demonstrated the common items
to model for an association. You may want to refer to The Unified Modeling
Language Reference Manual (Rumbaugh, Jacobson, and Booch, 1999) for a
detailed discussion, including the role and cardinality on each end of the
association, as well as a label for the association. The label, which is optional,
although highly recommended, is typically one or two words describing the
association. For example, in Figure 6-15, you see professors instruct seminars.
However, it is not enough simply to know professors instruct seminars. How
many seminars do professors instruct? None, one, or several? Furthermore,

Figure 6-14.
“Seminar” with all
its getter and setter
methods modeled

216 The Object Primer

3 I have cheated a little and added the method “purchaseParkingPass()” to the “Profes-
sor” and “Student” classes, even though I didn’t have requirements for this. You’ll see
why I added this method later in Section 6.3.4 when I discuss inheritance.

Course

name
courseNumber
fees

getFullName()
getCourseNumber()
setCourseNumber(number)
getFees()
setFees(amount)
getName()
setName(name)

Identifying the
multiplicities of
an association is
an important part
of modeling it.

S
tu

de
nt

na
m

e
ph

on
eN

um
be

r
em

ai
lA

dd
re

ss
st

ud
en

tN
um

be
r

av
er

ag
eM

ar
k

is
E

lig
ib

le
 (

na
m

e,
st

ud
en

tN
um

be
r)

ge
tS

em
in

ar
sT

ak
en

()
pu

rc
ha

se
P

ar
ki

ng
P

as
s(

)

E
nr

ol
lm

en
tR

ec
or

d

m
ar

ks
R

ec
ei

ve
d

ge
tA

ve
ra

ge
To

D
at

e(
)

ge
tF

in
al

M
ar

k(
)

P
ro

fe
ss

or

na
m

e
ph

on
eN

um
be

r
em

ai
lA

dd
re

ss
sa

la
ry

ge
tIn

fo
rm

at
io

n(
)

pu
rc

ha
se

P
ar

ki
ng

P
as

s(
)

0.
.*

0.
.*

1.
.*

1
1

1.
.*

0.
.* 0.
.1

0.
.*

1
of

fe
rin

g
of

C
ou

rs
e

na
m

e
co

ur
se

N
um

be
r

fe
es

ge
tF

ul
lN

am
e(

)

S
em

in
ar

se
m

in
ar

N
um

be
r

w
ai

tin
gL

is
t

ad
dS

tu
de

nt
(s

tu
de

nt
)

dr
op

S
tu

de
nt

(s
tu

de
nt

)

1

0.
.1

A
dd

re
ss

st
re

et
ci

ty
st

at
e

po
st

al
C

od
e

co
un

tr
y

va
lid

at
e(

)
ou

tp
ut

A
sL

ab
el

()

0.
.1

1

liv
es

 a
t

liv
es at

en
ro

lle
d

in
en

ro
lle

d
in

on
 w

ai
tin

g
lis

t

in
st

ru
ct

s

{o
rd

er
ed

, F
IF

O
}

Fi
gu

re
 6

-1
5.

C

om
bi

ne
d

cl
as

s
di

ag
ra

m

associations are often two-way streets: not only do professors instruct semi-
nars, but also seminars are instructed by professors. This leads to questions
such as: how many professors can instruct any given seminar and is it possi-
ble to have a seminar with no one instructing it? The implication is you also
need to identify the cardinality and optionality of an association. Cardinality
represents the concept of “how many,” and optionality represents the con-
cept of “whether you must have something.” Important to note is the UML
chooses to combine the concepts of optionality and cardinality into the sin-
gle concept of multiplicity. The multiplicity of the association is labeled on
either end of the line, one multiplicity indicator for each direction (Table 6-1
summarizes the potential multiplicity indicators you can use).

Another option for associations is to indicate the direction in which
the label should be read. This is depicted using a filled triangle, an exam-
ple of which is shown on the “offering of” association between the “Sem-
inar” and “Course” classes of Figure 6-15. This marker indicates that the
association should be read “a seminar is an offering of a course,” instead

218 The Object Primer

Class normalization. The process by which you refactor the behavior within
a class diagram in such a way as to increase the cohesion of classes while mini-
mizing the coupling between them.

Cohesion. The degree of relatedness within an encapsulated unit (such as a
component or a class).

Coupling. The degree of dependence between two items. In general, it is bet-
ter to reduce coupling wherever possible.

Getter. A method to obtain the value of a data attribute, or to calculate the
value, of an object or class.

Setter. A method that sets the value of a data attribute of an object or class.
Also known as a mutator.

D E F I N I T I O N S

For each class involved in an association, there is always a multiplicity for it.
When the multiplicity is one and one only (for example, one and one only
person may be President of the United States at any given time), then it is
common practice not to indicate the multiplicity and, instead, to assume it is
“1.” I believe this is a mistake. If the multiplicity is “1,” then indicate it as such.
When something is left off a diagram, I can’t tell if that is what is meant or if the
modeler simply hasn’t gotten around to working on that aspect of the model
yet. I always assume the modeler hasn’t done the work yet.

T I P

Always Indicate
the Multiplicity

of “a course is an offering of a seminar.” Direction markers should be
used whenever it isn’t clear which way a label should be read. My advice,
however, is if your label is not clear, then you should consider rewording
it. Refer to Figure 5-9 for an overview of modeling associations in UML
class diagrams.

At each end of the association, the role, the context an object takes
within the association, may also be indicated. My style is to model the
role only when the information adds value, for example, knowing the
role of the “Student” class is “enrolled student” in the “enrolled in” asso-
ciation doesn’t add anything to the model. I indicate roles when it isn’t
clear from the association label what the roles are, if there is a recursive
association, or if there are several associations between two classes. In Fig-
ure 6-16, I have evolved our class diagram to include two associations
between “Professor” and “Seminar.” Not only do professors instruct semi-
nars, they also assist in them. When several associations exist between
two classes, something that is relatively common, you often find you
need to indicate the roles to understand the associations fully. In this
case, I indicated the roles professors take, but not seminars, because the
role of the seminar objects weren’t very interesting. Both roles are mod-
eled for the “mentors” recursive association that the “Professor” class has
because it is interesting to know that the mentoring professor is called an
advisor and the mentored professor is called an associate.

Figure 6-16 is also interesting because it uses a UML contraint to indi-
cate that a professor may instruct a given seminar, may assist with a sem-
inar, or may not be involved in the seminar, but wouldn’t be both an
assistant and an instructor for the same seminar. The contraint descrip-
tion “NAND” represents the logical concept of “not and.”

Chapter 6 • Determining What to Build: Object-Oriented Analysis 219

Table 6-1. UML multiplicity indicators

Indicator Meaning

0..1 Zero or one

1 One only

0..* Zero or more

1..* One or more

n Only n (where n > 1)

0..n Zero to n (where n > 1)

1..n One to n (where n > 1)

Model roles when
an association is
recursive or when
several associations
exist between two
classes.

6.3.3 Modeling Dependencies

Dependency relationships are used to model transitory associations between
two classes. Transitory associations occur when one or both of the classes are
not persistent, in other words, their instances are not saved to permanent
storage. User interface classes are typically not persistent: you create the
screen or report object, work with it, and then discard/destroy it when you
no longer need it. Because these objects collaborate with other objects to ful-
fill their responsibilities, and because the only way an object can collaborate
with another is if it knows about it, then some sort of relationship must exist
between the two classes. In this case, you model this fact with a dependency
relationship, which, as you see in Figure 6-17, is depicted as a dashed arrow.
In this diagram, I chose to model the classes simply as boxes, instead of the
usual three-sectioned boxes indicating the name of the class, its attributes,
and its methods. As you saw in Chapter 5, both notations are acceptable
within the UML.

6.3.4 Introducing Reuse Between Classes via Inheritance

Similarities often exist between different classes. Very often two or more
classes will share the same attributes and/or the same methods. Because you

220 The Object Primer

Figure 6-16.
Modeling roles in
associations

Professor

name
phoneNumber
emailAddress
salary

getInformation()
0..*0..1

Seminar

seminarNumber
waitingList

addStudent(student)
dropStudent(student)

instructor
advisor

associate

0..1

0..*

assistant
0..*0..1

{NAND}

mentors

Cardinality. Represents the concept “how many?” in associations.

Optionality. Represents the concept “do you need to have it?” in associations.

Multiplicity. The UML combines the concepts of cardinality and optionality
into the single concept of multiplicity.

Recursive association. An association in which the objects involved in it are
instances of the same class. For example, people marry people.

D E F I N I T I O N S

don’t want to have to write the same code repeatedly, you want a mechanism
that takes advantage of these similarities. Inheritance is that mechanism. Inheri-
tance models “is a” and “is like” relationships, enabling you to reuse existing
data and code easily. When A inherits from B, we say A is the subclass of B
and B is the superclass of A. Furthermore, we say we have “pure inheri-
tance” when A inherits all the attributes and methods of B. The UML
modeling notation for inheritance is a line with a closed arrowhead point-
ing from the subclass to the superclass.

In Figure 6-15, many similarities occur between the “Student” and
“Professor” classes. Not only do they have similar attributes, but they also
have similar methods. To take advantage of these similarities, I created a
new class called “Person” and had both “Student” and “Professor” inherit
from it, as you see in Figure 6-18. This structure would be called the “Per-
son” inheritance hierarchy because “Person” is its root class. The “Person”
class is abstract: Objects are not created directly from it, and it captures
the similarities between the students and professors. Abstract classes are
modeled with their names in italics, as opposed to concrete classes, classes
from which objects are instantiated, whose names are in normal text.
Both classes had a name, email address, and phone number, so these
attributes were moved into “Person.” The “purchaseParkingPass()”
method was also common between the two classes, so that was also
moved into parent class. By introducing this inheritance relationship to
the model, I reduced the amount of work to be performed. Instead of
implementing these responsibilities twice, they are implemented once, in
the “Person” class, and reused by “Student” and “Professor.”

An interesting aspect of Figure 6-18 is the association between “Per-
son” and “Address.” First, this association was pushed up to “Person”
because both “Professor” and “Student” had a “lives at” association with

Chapter 6 • Determining What to Build: Object-Oriented Analysis 221

Figure 6-17.
Modeling
dependencies
between classes

Seminar
EnrollInSeminar

<<UI>>

Dependency relationship. A dependency relationship exists between Class A
and B when instances of Class A interact with instances of Class B. Dependency
relationships are used when no direct relationship (inheritance, aggregation, or
association) exists between the two classes.

Persistence. The issue of how objects are permanently stored.

D E F I N I T I O N S

Associations are
inherited.

“Address.” I could do this because, as I described in Chapter 5, associa-
tions are implemented by the combination of attributes and methods.
Because attributes and methods can be inherited, any association they
implemented can also be inherited by implication. It made sense to
apply inheritance here because the associations represented the same
concept: a person lives at an address (I was also lucky because the direc-
tion of the associations, as well as their multiplicities, were identical).

Another interesting aspect of Figure 6-18 is that although both “Pro-
fessor” and “Student” had associations with “Seminar,” I didn’t choose to
push this association up into “Person.” The issue is that the semantics of
the two associations are different. First, one association is unidirectional
whereas the other is bidirectional, a good indication that they are signifi-
cantly different. Second, the multiplicities are different, another good
indication that the associations are different. Third, and most important,
the two associations are completely different from one another. One rep-
resents the fact that professors instruct seminars, whereas the other one
represents that students are on waiting lists to enroll in a seminar.

6.3.5 Modeling Aggregation Associations

Sometimes an object is made up of other objects. For example, an airplane
is made up of a fuselage, wings, engines, landing gear, flaps, and so on. A
delivery shipment contains one or more packages. A team consists of two
or more employees. These are all examples of the concept of aggregation,
which represents “is part of” relationships. An engine is part of a plane, a
package is part of a shipment, and an employee is part of a team.

Modeling aggregation associations, or composition associations that are
simply stronger forms of aggregation, is similar conceptually to modeling

222 The Object Primer

Abstract class. A class that doesn’t have objects instantiated from it.

Concrete class. A class that has objects instantiated from it.

Inheritance hierarchy. A set of classes related through inheritance. Also
referred to as a class hierarchy.

Inheritance. The representation of an is a, is like, or is kind of relationship
between two classes. Inheritance promotes reuse by enabling a subclass to ben-
efit automatically from all the behavior it inherits from its superclass(es).

Root class. The top-most class in an inheritance hierarchy.

Subclass. If Class B inherits from Class A, we say B is a subclass of A.

Superclass. If Class B inherits from Class A, we say A is a superclass of B.

D E F I N I T I O N S

Aggregation
models “is part of”
associations.

associations. In Figure 6-19, you see a simple class model depicting the rela-
tionships between “Program,” (a program is a collection of courses that lead
to a degree) and the “Course” class. A course may be part of one or more
programs—some courses such as “ARC 305 Medieval Gardening Tools” are
for general interest only and are not part of a program—and any given pro-
gram has one or more courses in it. Also notice how an association exists
between “Program” and “Course” representing that some courses are rec-
ommended for a program, but are not officially offered as part of them (my
SMEs told me this). For example, the course “CSC 148 Introduction to
Computer Science” is recommended for the engineering, business, and
physics programs within the university. It made sense to model this rela-
tionship with an association instead of an aggregation because it isn’t true
that a recommended course is part of a program.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 223

Person

name
phoneNumber
emailAddress

purchaseParkingPass()

Professor

salary

getInformation()

10..1

Address

street
city
state
postalCode
country

validate()
outputAsLabel()

lives at

Student

studentNumber
averageMark

isEligible (name,
studentNumber)
getSeminarsTaken()

Figure 6-18.
Applying the
concept of
inheritance in a
class diagram

In the class diagram of Figure 6-15, I was lucky because I used similar names for
these attributes in both classes: “name,” “emailAddress,” and “phoneNumber,”
respectively. However, you will often find situations where one class has an
attribute called “name,” whereas another one has “firstName,” “middleInitial,”
and “lastName.” You then need to decide whether these are, in fact, the same
thing and, if they are, be prepared to refactor your existing model, and perhaps
even code to reflect whichever approach to storing a person’s name you accept.
A similar issue can also occur with methods and associations.

T I P

Sometimes
Opportunities
for Inheritance
Are Not So
Obvious

In Figure 6-20, I present an example using composition, modeling the
fact that a product is composed of one or more components, and then,
in turn, that a component may be composed of several subcomponents
(you can have recursive aggregation and composition associations).
Composition makes sense in both these cases because whatever you do
to an instance of the whole, you are likely to also do to its parts. For
example, if I sell a product by implication, I am selling its components. A
good rule of thumb is that the composition form of aggregation is gener-
ally applicable whenever both classes represent physical items and aggre-
gation makes sense.

6.3.6 Modeling Association Classes

Association classes, also called link classes, are used to model associations
that have methods and attributes. “EnrollmentRecord” is modeled as an
associative class in Figure 6-21, instead of being modeled as a “normal”
class as in Figure 6-15. Associative classes are typically modeled during
analysis, as you see in Figure 6-21, and then refactored into the original
approach you see in Figure 6-15 during design. The reason this occurs is,

224 The Object Primer

Aggregation. The representation of “is part of” associations.

Composition. A strong form of aggregation in which the “whole” is com-
pletely responsible for its parts and each “part” object is only associated with
the one “whole” object.

D E F I N I T I O N S

CourseProgram

1..*

recommended for 0..*0..*

0..*Figure 6-19.
A course is part of a
program

Product Component
1..*0..*

0..*

0..* sub-
assembly

assembly

Figure 6-20.
Modeling
composition

Association
classes may be
useful during
analysis, but need
to be resolved
during design.

to date, at least to my knowledge, no mainstream programming language
exists that supports the notion of associations that have responsibilities.
Because you can directly build your software in this manner, I have a ten-
dency to stay away from using association classes and, instead, resolve
them during analysis, as you saw with my original approach. Yes, this is
not a purist way to model, but it is programmatic. Nothing is wrong with
using associative classes. I apply this concept on occasion; I just don’t
find many situations where it makes sense.

I want to take a minute to point out a potential problem with the
“enrolled in” associations in both Figure 6-15 and Figure 6-21. I doubt
they are truly unidirectional. In Chapter 3, a use case indicates that lists
of students enrolled in a seminar are produced for professors. This tells
me a need exists to traverse from “Seminar” objects to “Student” objects,
indicating that these associations should be modeled bidirectionally.

6.3.7 Documenting Class Models

It isn’t enough to draw a class diagram; it also needs to be documented.
The bulk of the documentation work is documenting the details about a
class, as well as the reasoning behind any trade-offs you have made.
Here’s what to do:

Chapter 6 • Determining What to Build: Object-Oriented Analysis 225

One of the following sentences should make sense: “A subclass IS A superclass”
or “A subclass IS LIKE A superclass.” For example, it makes sense to say a
student is a person and a dragon is like a bird. It doesn’t make sense to say a
student is a vehicle or is like a vehicle, so the class “Student” likely shouldn’t
inherit from “Vehicle.”

T I P

Apply the
Sentence Rule

Student

EnrollmentRecord

1..*1..* Seminar
enrolled in

marksReceived

getAverageToDate()
getFinalMark()

Figure 6-21.
An example of an
associative class

1. Classes. A class is documented by a sentence or two describing
its purpose. You should also indicate whether the class is persis-
tent or transitory, and if it has any aliases (other names it is
called) for the class. Documenting the potential alias for a class is
important because different people in an organization can call
the same thing by different names. For example, do banks serve
clients or customers? Do truckers drive trucks, vehicles, or lor-
ries? Do children eat sweets, candies, or goodies? You want to
ensure that everyone is using the same terminology. Also,
include references to any applicable business rules or constraints
contained in the supplementary specification.

2. Attributes. An attribute is best described with one or two sen-
tences, its type should be indicated if appropriate, an example
should be given if not unclear how the attribute is to be used,
and a range of values should be defined, if appropriate. Also,
include references to any applicable business rules or constraints
contained in the supplementary specification.

3. Methods. Methods are documented with pseudo-code, also known
as structured English, describing its logic. The parameters (if any)
and the return value (if any) should be documented in a manner
similar to attributes. The preconditions and postconditions for the
method should be indicated so developers understand what the
method does. Also, include references to any applicable business
rules or constraints contained in the supplementary specification.

4. Inheritance. I generally don’t document inheritance relation-
ships. My belief is if you need to document why you have applied
inheritance, then you probably shouldn’t have applied it to start.

5. Associations. The most important information about associa-
tions—the label, multiplicities, and roles—already appear on the
diagram. I typically also include a few sentences describing the
association, as well as reference any applicable business rules or
constraints contained in the supplementary specification.

226 The Object Primer

When deciding whether to use aggregation or composition over association,
Craig Larman (1998) says it best: If in doubt, leave it out. The reality is that
many modelers will agonize over when to use aggregation even though little
difference exists among association, aggregation, and composition at the
coding level, something you see in Chapter 8.

T I P

If In Doubt,
Leave It Out

6. Aggregation and composition. These are both documented
exactly as you would associations.

6.3.8 Conceptual Class Modeling Tips

In this section, I want to share a collection of tips and techniques that I
have found useful over the years to improve the quality of my concep-
tual class models.

1. You don’t have to get it perfect at the start. I started the con-
ceptual model by converting my Class Responsibility Collabora-
tor (CRC) model into a UML class model. This was a good start,
but I quickly found I needed to evolve the model as my analysis
of the system moved forward. The point is I didn’t get the model
right at the start and that was okay. I didn’t get the multiplicities
on associations at the beginning, and I didn’t even get all the
classes to start. Many modelers will waste a lot of time at the
beginning of conceptual modeling by focusing on one small
aspect of the model and trying to get it right at first. It’s also
common to see modeling teams argue for hours about whether
to use association, aggregation, or composition in a certain spot
when little difference actually exists among the three options. I
would rather pick one, move forward, and trust that, at some
point in the future, it will become clearer which option to use as
I understand the problem domain better.

2. Start at your domain model. Your CRC model contains impor-
tant information that is relevant to your conceptual model, pro-
viding an excellent starting point.

3. Evolve your class diagram via sequence diagrams. Your sequence
diagrams model the logic of your use cases, in particular, the crit-
ical business logic your system must support. As you develop
your sequence diagrams, the topic of Section 6.2, you quickly
flesh out the behaviors required of your classes.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 227

Postcondition. An expression of the properties of the state of an operation or
use case after it has been invoked successfully.

Precondition. An expression of the constraints under which an operation or use
case will operate properly.

D E F I N I T I O N S

4. Focus on the problem space. The purpose of analysis is to under-
stand and model the problem space of your system, not the solution
space. Optimization and technology issues shouldn’t yet be taken
into account within your models; this is what design is all about.

5. Focus on fulfilling the requirements first. Many modelers
make the mistake of focusing on the application of inheritance
relationships or an analysis pattern they have read about, instead
of on analyzing their requirements model. Inheritance and
analysis patterns are good things but, if your model doesn’t
reflect your problem space, then it doesn’t really matter what
fancy techniques you have applied, does it?

6. Use meaningful names. Your model elements should all have
names that describe what they represent. Use full words. I prefer to
see method names, such as “calculateInvoiceTotal()” as opposed to
“calcInvTot().” Yes, the second name is easier to type because it’s
shorter, but is it easier to understand? Even worse are names such as
“param1” and “x” because you have no idea what they represent.

7. Perform object-oriented analysis. Throughout this chapter, I
describe proven techniques for performing object-oriented
analysis (OOA), yet nowhere do you see me advise you to look at
the existing database schema and create your models based on
that design. This is a data-driven approach to development, not
an object-oriented one, an approach that rarely results in high-
quality software (Ambler, 1998b). Many organizations flounder
with objects because they refuse to give up their old data-driven
ways and/or they seek to recover their huge investment in exist-
ing legacy data models. Data modeling, more accurately called
persistence modeling, is described in Chapter 7. Another related
issue you run into, luckily one that is easier to overcome, is SMEs
who describe requirements in terms of tables. Don’t worry about
it; just convert the concept to classes and move forward.

8. Understand and effectively apply analysis patterns. This is
the topic of Section 6.7, so the only thing I say now is analysis
patterns are good things.

9. Class model in parallel with user interface prototyping. As
you develop your user interface prototype, you quickly discover
that detailed attributes and operations need to be implemented
by your classes. Never forget that object-oriented development is
iterative—you will typically work on several models in parallel,
working on each one a bit at a time.

228 The Object Primer

6.4 Activity Diagramming

UML activity diagrams (Rumbaugh, Jacobson, and Booch, 1999) are used
to document the logic of a single operation/method, a single use case, or
the flow of logic of a business process. In many ways, activity diagrams
are the object-oriented equivalent of flow charts and data-flow diagrams
(DFDs) from structured development (Gane and Sarson, 1978). The activ-
ity diagram of Figure 6-22 depicts the business logic for how someone
new to the university would enroll for the first time.

The filled circle represents the starting point of the activity diagram—
effectively a placeholder—and the filled circle with a border represents
the ending point. The rounded rectangles represent processes or activities
that are performed. For the diagram of Figure 6-22, the activities map rea-
sonably closely to use cases, although you will notice the “Enroll in Semi-
nar(s)” activity would be the invocation of the “Enroll in Seminar” use
case several times. Activities can also be much more finely grained, partic-
ularly if I had chosen to document the logic of a method instead of a
high-level business process. The diamond represents decision points. In
this example, the decision point had only two possible outcomes, but it
could just as easily have had many more. The arrows represent transitions
between activities, modeling the flow order between the various activities.
The text on the arrows represent conditions that must be fulfilled to pro-
ceed along the transition and are always described using the format “[con-
dition].”4 The thick bars represent the start and end of potentially parallel
processes—after you are successfully enrolled in the university, you must
attend the mandatory overview presentation, as well as enroll in at least
one seminar and pay at least some of your tuition.

Exiting from an activity is possible in several ways, as you see with the
“Fill out Enrollment Forms” activity. If your forms are correctly filled out,
then you can proceed to enroll in the university. If your forms aren’t cor-
rect, however, then you need to obtain help, perhaps from a registrar, to
fill them out correctly.

This activity diagram is interesting because it cuts across the logic of
several of the use cases identified in Chapter 3. It is a good thing that use
case models don’t communicate the time ordering of processes well. For
example, although the use case diagram presented in Figure 3-8 gives you
a good idea as to the type of functionality this system performs, it offers
no definitive answer as to the order in which these use cases might occur.
The activity diagram of Figure 6-22 does, however. Once again, different
models have different strengths and weaknesses.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 229

4 I suspect, in future versions of the UML, we will see conditions documented using the
UML constraint notation discussed earlier.

Activity diagrams
are used to model
the logic of a
business process,
use case, or
method.

6.4.1 How to Draw Activity Diagrams

The following steps describe the fundamental tasks of activity diagram-
ming, tasks you will perform in an iterative manner.

1. Identify the scope of the activity diagram. Begin by identify-
ing what it is you are modeling. Is it a single use case? A portion
of a use case? A business process that includes several use cases?
A single method of a class? Once you identify the scope of your
diagram, you should add a label at the top, using a note, indicat-
ing an appropriate title for the diagram and a unique identifier
for it. You may also want to include the date and even the names
of the authors of the diagram, as well.

2. Add start and end points. Every activity diagram has one start-
ing point and one ending point, so you might as well add them
right away. Fowler and Scott’s (1997) style is to make ending
points optional. Sometimes an activity is simply a dead end but,
if this is the case, then there is no harm in indicating the only
transition is to an ending point. This way, when someone else
reads your diagram, he or she knows you have considered how
to exit from these activities.

230 The Object Primer

Figure 6-22.
A UML activity
diagram for
enrolling in school
for the first time

Fill out Enrollment
Forms

Enroll in University

[rejected]

Enroll In Seminar(s)

[accepted]

Attend University
Overview

Presentation

Make Initial Tuition
Payment

Enrolling in the
University for the
first time

AD #: 007

[correct]

Obtain Help to Fill
Out Forms

[incorrect]

3. Add activities. If you are modeling a use case, introduce an
activity for each major step initiated by an actor (this activity
would include the initial step, plus any steps describing the
response of the system to the initial step). If you are modeling a
high-level business process, introduce an activity for each major
process, often a use case or a package of use cases. Finally, if you
are modeling a method, then it is common to have an activity
for this step in the code.

4. Add transitions from the activities. My style is always to exit
from an activity, even if it is simply to an ending point. When-
ever there is more than one transition out of an activity, you
must label each transition appropriately.

5. Add decision points. Sometimes the logic of what you are mod-
eling calls for a decision to be made. Perhaps something needs to
be inspected or compared to something else. Important to note
is that the use of decision points is optional. For example, in Fig-
ure 6-22, I could just as easily have modeled the accepted and
rejected transitions straight out of the “Enroll in University”
activity.

6. Identify opportunities for parallel activities. Two activities
can occur in parallel when no direct relationship exists between
them and they must both occur before a third activity can. For
example, in Figure 6-22, you see it is possible to attend the
overview or enroll in seminars in either order; it is just that both
activities must occur before you can end the overall process.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 231

Activity diagram. A UML diagram used to model high-level business
processes or the transitions between states of a class (in this respect, activity dia-
grams are effectively specializations of state chart diagrams).

Data-flow diagram (DFD). A diagram that shows the movement of data
within a system among processes, entities, and data stores. Data-flow diagrams,
also called process diagrams, were a primary artifact of structured/procedural
modeling.

Flow chart. A diagram depicting the logic flow of a single process or method.
Flow charts were a primary artifact of structured/procedural modeling.

State chart diagram. A UML diagram that describes the states an object may
be in, as well as the transitions between states. Formerly referred to as a “state
diagram” or “state-transition diagram.”

D E F I N I T I O N S

6.4.2 How to Document Activity Diagrams

Activity diagrams are usually documented with a brief description of the
activity and an indication of any actions taken during a process. Often,
this is simply a reference to one or more use cases or methods. Also, for
complex activities, it is common to document it using an activity dia-
gram. In many ways, activity diagrams are simply a variation of the UML
state chart diagrams, described in Chapter 7.

6.5 User Interface Prototyping

User interface prototyping is an iterative analysis technique in which
users are actively involved in the mocking-up of the UI for a system. UI
prototyping has two purposes: First, it is an analysis technique because it
enables you to explore the problem space your system addresses. Second,
UI prototyping enables you to explore the solution space of your system,
at least from the point-of-view of its users, and provides a vehicle for you
to communicate the possible UI design(s) of your system. In this chapter,
I discuss the fundamentals of UI prototyping and, in Chapter 7, I present
a collection of tips and techniques for designing effective user interfaces
for object-oriented software.

As you see in the activity diagram depicted in Figure 6-23, four high-
level steps are in the UI prototyping process:

• Determine the needs of your users

• Build the prototype

• Evaluate the prototype

• Determine if you are finished

6.5.1 Determining the Needs of Your Users

User interface modeling moves from requirements definition into analysis
at the point you decide to evolve all or part of your essential user interface

232 The Object Primer

Every activity has at least one entry transition—otherwise, you would never
perform the activity, and at least one exit transition—otherwise you would
never stop performing it. For each activity, I always ask myself: From where
could I get into this and where can I go from here? By asking this question, it
enables you to model the pertinent logic thoroughly.

T I P

Activities Have
Entry and Exit
Transitions

prototype, described in detail in Chapter 3, into a traditional UI prototype.
This implies that you convert your handdrawings, flip-chart paper, and
sticky notes into something a little more substantial. You begin this process
by making platform decisions. For example, do you intend to deploy your
system so it runs in an Internet browser, as an application with a Windows-
based graphical user interface (GUI), as a cross-platform Java application, or
as a mainframe-based set of “green screens”? Different platforms lead to dif-
ferent prototyping tools, for a browser-based application, you need to use
an HTML-development tool, whereas a Java-based application would
require a Java development tool and a different approach to the user inter-
face design. User interface design is discussed in Chapter 7.

As you iterate through UI prototyping, you discover you need to
update your defined requirements, including your use case model (Sec-
tion 6.1) and your essential user interface prototype (Chapter 3). You are
also likely to discover that information is missing from your domain
model, a Class Responsibility Collaborator (CRC) model (Chapter 3), as
well as from your conceptual model, a UML class model (Section 6.3).
These models should be updated, as is appropriate, as you proceed with
UI prototyping. Remember, object-oriented software development is an
iterative process, so this is normal.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 233

Determine Needs

[finished]

Build Prototype

Evaluate Prototype

[continue]

Figure 6-23.
The iterative steps
of prototyping

You discover the
need to update
other models as
your UI prototype
evolves.

You begin by
choosing the
user interface
platform.

6.5.2 Building the Prototype

Using a prototyping tool or high-level language, you develop the screens,
pages, and reports needed by your users. The best advice during this stage of
the process is not to invest a lot of time in making the code “good” because
chances are high you will scrap large portions of your prototype code when
portions or all of your prototype fail the evaluation. With the user interface
platform selected, you can begin converting individual aspects of your
essential UI prototype into your traditional UI prototype. For example, with
a browser-based platform, your major UI elements become HTML pages
whereas, with a Windows-based platform, they would become windows or
dialog boxes. Minor UI elements would become buttons, list boxes, custom
list boxes, radio buttons, and so on as appropriate.

6.5.3 Evaluating the Prototype

After a version of the UI prototype is built, it needs to be evaluated by
your SMEs to verify that it meets their needs. I’ve always found I need to
address three basic questions during an evaluation:

• What is good about the UI prototype?

• What is bad about the UI prototype?

• What is missing from the UI prototype?

6.5.4 Determining If You Are Finished

After evaluating the prototype, you may find you need to scrap parts of
it, modify parts, and even add brand-new parts. You want to stop the UI
prototyping process when you find that the evaluation process is no
longer generating any new ideas or it is generating a small number of
not-so-important ideas. Otherwise, back to step one.

234 The Object Primer

Although UI prototyping is an important part of analysis and design, it’s not
sufficient by itself. UI prototypes depict what will be built, but are unable to
communicate adequately how they will be used (that is what use case models
are good for). Furthermore, UI prototypes don’t provide much indication as to
the details of the business logic behind the screens, which is what sequence and
activity diagrams are good at. And they aren’t good at depicting the static
structure of your software, which is where class models excel.

T I P

User Interface
Prototyping Is
Not a Substitute
for Analysis and
Design

6.5.5 Good Things to Understand About Prototyping

Constantine and Lockwood (1999) provide valuable insight into the
process of user interface prototyping. First, you cannot make everything
simple. Sometimes your software will be difficult to use because the prob-
lem it addresses is inherently difficult. Your goal is to make your user
interface as easy as possible to use, not simplistic. Second, they differenti-
ate between the concepts of WYSIWYG, “What You See Is What You Get,”
and WYSIWYN, “What You See Is What You Need.” Their point is that a
good user interface fulfills the needs of the people who work with it. It
isn’t loaded with a lot of interesting but unnecessary, features. Third, con-
sistency is important in your user interface. Inconsistent user interfaces
lead to less usable software, more programming, and greater support and
training costs. Fourth, small details can make or break your user interface.
Have you ever used some software, and then discarded it for the product
of a competitor because you didn’t like the way it prints, saves files, or
some other feature you simply found too annoying to use? I have.
Although the rest of the software may have been great, that vendor lost
my business because a portion of its product’s user interface was deficient.

6.5.6 Prototyping Tips and Techniques

I have found the following tips and techniques have worked well for me
in the past while UI prototyping:

1. Work with the real users. The best people to get involved in
prototyping are the ones who will actually use the application
when it is done. These are the people who have the most to gain
from a successful implementation, and these are the people who
know their own needs best.

2. Use a prototyping tool. Invest the money in a prototyping tool
that enables you to put screens together quickly. Because you
probably won’t want to keep the prototype code you write—
code written quickly is rarely worth keeping—you shouldn’t be
too concerned if your prototyping tool generates a different type
of code than what you intend to develop in.

3. Get your SMEs to work with the prototype. Just as you want to
take a car for a test drive before you buy it, your users should be

Chapter 6 • Determining What to Build: Object-Oriented Analysis 235

WYSIWYG. What You See Is What You Get.

WYSIWYN. What You See Is What You Need.

D E F I N I T I O N S

able to take an application for a test drive before it is developed.
Furthermore, by working with the prototype hands-on, they can
quickly determine whether the system meets their needs. A good
approach is to ask them to work through some use case scenarios
using the prototype as if it were the real system.

4. Understand the underlying business. You need to understand
the underlying business before you can develop a prototype that
supports it. In other words, you need to base your UI prototype on
your requirements. The more you know about the business, the
more likely it is you can build a prototype that supports it.

5. Don’t spend a lot of time making the code good. At the begin-
ning of the prototyping process, you will throw away a lot of
your work as you learn more about the business. Therefore, it
doesn’t make sense to invest a lot of effort in code you probably
aren’t going to keep anyway.

6. Only prototype features that you can actually build. Christ-
mas wish lists are for kids. If you cannot possibly deliver the
functionality, don’t prototype it.

7. Get an interface expert to help you design it. User interface
experts understand how to develop easy-to-use interfaces,
whereas you probably don’t. A general rule of thumb is, if you’ve
never taken a course in human factors, you probably shouldn’t
be leading a UI prototyping effort.

8. Explain what a prototype is. The biggest complaint developers
have about UI prototyping is their users say “That’s great. Install it
this afternoon.” Basically, this happens because users don’t realize
a few months of work are left to do on the system. The reason this
happens is simple: From your user’s point-of-view, a fully func-
tional application is a bunch of screens and reports tied together
by a menu. Unfortunately, this is exactly what a prototype looks
like. To avoid this problem, point out that your prototype is like a
Styrofoam model that architects build to describe the design of a
house. Nobody would expect to live in a Styrofoam model, so why
would anyone expect to use a system prototype to get a job done?

9. Avoid implementation decisions as long as possible. Be care-
ful about how you name user interface items. Strive to keep the
names generic, so you don’t imply too much about the imple-
mentation technology. For example, in Figure 6-2, I used the
name “UI23 Security Login Screen,” which implies I intend to
use GUI technology to implement this major UI item. Had I

236 The Object Primer

named it “UI23 Security Login,” I wouldn’t have implied an
implementation technology.

6.6 Evolving Your Supplementary Specification

During analysis, you will evolve your understanding of the contents of your
supplementary specification. This includes fleshing out the constraints, busi-
ness rules, and nonfunctional requirements you identified during the require-
ments definition. As you evolve your other models, such as your activity
diagrams and your conceptual class model, you are likely to discover that the
information contained in your supplementary specification is not as detailed
as it should be and, therefore, needs to be worked on more. Also, you will
apply the information contained in your supplementary specification within
your models, either on your diagrams using the UML’s Object Constraint Lan-
guage (OCL) or as references within the model documentation.

6.6.1 The Object Constraint Language

OCL (Warner and Kleppe, 1999) is a formal language, similar to structured
English, used to express side-effect-free constraints within Unified Modeling
Language models. OCL can appear on any UML diagram or in the support-
ing documentation describing a diagram. OCL can be used for a wide variety
of purposes, including specifying the invariants of classes, preconditions and
postconditions on operations, and constraints on operations. The reality is
that a graphical model, such as a UML class diagram, isn’t sufficient for a pre-
cise and unambiguous specification. You must describe additional con-
straints about the objects in the model, constraints that are defined in your
supplementary specification. OCL can be used to model actual constraints,
described in your supplementary specification, as well as business rules and
functional requirements. Although this information is described in your sup-
plementary specification using natural language your users understand,
experience shows that natural language often results in ambiguities that, in
turn, lead to defects in your software. Hence, the need for OCL.

OCL statements are depicted on UML diagrams in the format “{con-
straint description},” where the constraint description may be in any for-
mat, including predicate calculus. Fowler and Scott (1997) suggest you
focus on readability and understandability and, therefore, suggest using an
informal description. For example, in Figure 6-11, I modeled the constraint
“{ordered FIFO}” on the association between “Seminar” and “Student”
and, in Figure 6-16, I modeled the “{NAND}” constraint between two asso-
ciation roles. The basic idea is that students are put on the waiting list on a
first-come, first-served basis—in other words, the students are put on the
waiting list in order. UML constraint statements are used to model com-

Chapter 6 • Determining What to Build: Object-Oriented Analysis 237

You will apply
the information
contained in your
supplementary
specification in
your other models.

OCL is used to
depict constraints,
preconditions,
postconditions,
and invariants
within your UML
models.

plex and/or important information accurately in your UML diagrams. An
important aspect of OCL is it is a modeling language, not a programming
language. You will use a language such as OCL to document your object
design, and a language such as Java or C++ to implement it.

6.7 Applying Analysis Patterns Effectively

Analysis patterns (Fowler, 1997; Ambler, 1998a) describe solutions to
common problems found in the analysis/business domain of a system.
Analysis patterns are typically more specific than design patterns,
described in Chapter 7, because they describe a solution for a portion of a
business domain. This doesn’t mean an analysis pattern is applicable
only to a single line of business, although it could be. In this section, I
overview two analysis patterns I have used in various business domains,
patterns I believe you will find useful when you are modeling.

6.7.1 The Business Entity Analysis Pattern

Every organization has to deal either with other organizations or people,
usually both. As a result, you need to keep track of them. The solution
for the Business Entity analysis pattern (Ambler, 1998a), similar to
Fowler’s (1997) Party pattern, is presented in Figure 6-24. This pattern is a
specialization of Peter Coad’s Roles Played pattern (Coad, 1992; Ambler,
1998a) to model the different types of organizations and people with
whom your company interacts.

238 The Object Primer

The Business
Entity analysis
pattern describes
the different types
of people and
organizations
with whom you
interact.

BusinessEntity 1..*

0..*

1

Person

salutation
firstName
middleInitial
surname

0..1
Organization

name

CustomerRole

customerID

EntityRole
start
end

SupplierRole

placeOrder()

EmployeeRole

employeeID

hire()
promote()
demote()
transfer()
fire()
endEmployment()

Figure 6-24.
The Business Entity
analysis pattern

The basic idea of this pattern is to separate the concept of a business
entity, such as a person or company, from the roles it fulfills. For exam-
ple, Tony Stark may be a customer of your organization, as well as an
employee. Furthermore, one day he may also sell services to your com-
pany, also making him a supplier. The person doesn’t change, but the
role(s) he has with your organization does, so you need to find a way to
model this, which is what this pattern does. Each business entity has one
or more roles with your organization and each role has a range during
which it was applicable (the “start” and “end” attributes). Each role
implements the behavior specific to it, such as placing an order with a
supplier or the hiring and promotion of an employee.

Note that the use of aggregation between “”BusinessEntity” and “Enti-
tyRole” is questionable at best. Is a role really part of a business entity?
This sounds like a philosophical question that likely won’t have a defini-
tive answer. However, the Roles Played pattern, on which this is based,
uses aggregation, so I decided to stay consistent with the source.

6.7.2 The Contact Point Analysis Pattern

The Contact Point analysis pattern (Ambler, 1998a), the solution for
which is depicted in Figure 6-25, describes an approach for keeping track
of the various means by which you interact with business entities. Your
organization most likely sends information and bills to, as well as ships
products to, the surface addresses of your customers. Perhaps it emails
information to customers and employees, or faxes information to them.
It also probably needs to keep track of the contact phone number for
anyone with whom it interacts. The Contact Point pattern models an
approach to supporting this functionality.

The basic idea behind this pattern is that surface addresses, email
addresses, and phone numbers are really the same sort of thing—a
means by which you can contact other business entities. Subclasses of
“ContactPoint” need to be able to do at least two tasks: They need to
know how things/information can be sent to them and they need to
know how to output their “label information.” You can send faxes to

Chapter 6 • Determining What to Build: Object-Oriented Analysis 239

Invariant. A set of assertions about an instance or class that must be true at all
“stable” times, where a stable time is the period before a method is invoked on
the object/class and immediately after a method is invoked.

Object Constraint Language (OCL). A formal language, similar to struc-
tured English, to express side-effect-free constraints within UML models.

D E F I N I T I O N S

The Contact Point
analysis pattern
describes an
approach for
keeping track of
the way your
organization
interacts with
business entities.

phone numbers, email to electronic addresses, and letters and packages
to surface addresses. You also need to be able to print contact point infor-
mation on labels, letterhead, and reports. To do so, contact points collab-
orate with instances of “ContactPointType” for descriptor information.
For example, you want to output “Fax: (416) 555-1212,” not just “(416)
555-1212.” Furthermore, the “Phone” class should have the capability to
be automatically dialed. The different varieties of contact point types
would include details such as voice phone line, fax phone line, work
address, home address, billing address, and personal email ID.

I applied the Item-Item Description pattern (Coad, 1992; Ambler,
1998a) when modeling the “ContactPoint” and “ContactPointType”
classes. This demonstrates an important principle of object-oriented pat-
terns—they can be used in combination to solve larger problems.

6.7.3 The Advantages and Disadvantages of Patterns

Several advantages and disadvantages exist to working with object-
oriented patterns. They are discussed in the following sections.

6.7.3.1 The Potential Advantages of Patterns

1. Patterns increase developer productivity. By documenting
solutions to common problems, patterns promote reuse of devel-
opment efforts. Increased reuse within your organization
improves your productivity.

2. Patterns describe proven solutions to common problems. Pat-
terns are “born” when developers recognize they are applying
the same solution to a common problem over and over again. I
developed the Contact Point analysis pattern after implementing
similar solutions for a variety of computer systems.

3. Patterns increase the consistency between applications. By
using the same patterns over and over again, you increase the
consistency between applications, making them easier to under-
stand and maintain. When your applications are developed in a

240 The Object Primer

You can use
patterns together
to solve difficult
problems.

The real value of analysis patterns is the thinking behind them. A
pattern might not be the total solution to your problem, but it
might provide enough insight to help save you several hours or
days during development. Consider analysis patterns as a good start
at solutions.

T I P

How to Use Analysis
Patterns Effectively

consistent manner, it’s that much easier to do technical walk-
throughs that enable you to improve the quality of your devel-
opment efforts.

4. Patterns are potentially better than reusable code. People can
talk about reusable code all they want, but the differences
between system platforms makes this dream difficult at best.
However, patterns support the reuse of other people’s approaches
to solving problems (Ambler, 1998b; Ambler, 1999) and, there-
fore, can be applied in a wide range of environments because
they are not environment-specific.

5. More and more patterns are being developed every day. A lot of
exciting work is going on in patterns, with new patterns being
introduced every day. This enables you to take advantage of the
development efforts of thousands of people, often for the mere cost
of a book, magazine, or telephone call to link you to the Internet.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 241

I maintain a Web page, http://www.ambysoft.com/processPatternsPage.html,
that provides links and references to printed literature pertaining to patterns
and the software process. From this page, I link to the major patterns sites
online, including sites specializing in analysis patterns.

T I P

Visit the Process
Patterns
Resource Page

BusinessEntity 1..*1
ContactPointType

name
description

ContactPoint

sendTo()
asLabel()

ElectronicAddress

email

sendTo()
asLabel()

Phone

number

call()
sendTo()
asLabel()

contacted through
{ordered}

SurfaceAddress

street
city
state
postalCode

sendTo()
asLabel()

ShippingAddress

 Country

name
phoneCode

1

0..*

0..*

0..* 1..*describes

Figure 6-25.
The Contact Point
analysis pattern

6.7.3.2 The Potential Disadvantages of Patterns

1. You need to learn a large number of patterns. Although there’s
an advantage to having access to a large number of patterns, the
disadvantage is you have to learn a large number of them, or at
least know they exist. This can be a lot of work.

2. The NIH (not-invented-here) syndrome can get in the way.
Many developers are unwilling to accept the work of others: If they
didn’t create it, then it isn’t any good. In addition, if a pattern is
not exactly what they need, then they might not be willing to use
it. Whenever I run into this attitude, I always like to point out the
versatility and widespread acceptance of patterns within the object
community and discuss several common patterns such as Singleton
(Gamma et al., 1995) and Item-Item Description (Coad, 1992).

3. Patterns are not code. Hard-core techies are often unwilling to
accept anything as reusable except code. For some reason, they
find it hard to accept that you can reuse ideas as well as source
code.

4. “Pattern” is quickly becoming a buzzword. As more people
realize the value of patterns, more marketing people are begin-
ning to exploit it to increase the sales of whatever product or
service they are pushing. Just as in the mid-1990s we saw the
term “object-oriented” used as an adjective to describe products
that had almost nothing to do with objects, I suspect we’ll see
the same sort of thing happen with the term “pattern.”

6.8 User Documentation

Mayhew (1992) believes the user documentation is part of the user inter-
face for an application and that well-written user documentation is no
excuse for a poorly designed user interface. My experience confirms these
beliefs—because modern systems are complex, your users often require
significant documentation that describes how to use them effectively.
Because different types of users have different needs, you also discover
you need to develop several kinds of user documentation. Don’t worry,
it’s not as hard as it sounds, particularly if you have developed the mod-
els this book recommends.

6.8.1 Types of User Documentation

Weiss (1991) points out the need for different kinds of manuals to support
the needs of different types of users. The lesson to be learned is that one

242 The Object Primer

User documentation
is required for most
modern systems.

manual does not fit all. He suggests a tutorial manual for novice users, a
user manual for intermediate users, and a reference manual for expert
users. Tourniaire and Farrell (1997) also recommend that you develop a
support user’s guide describing the support services provided to your user
community, a document that is typically less than a page in length.

When appropriate, your user documentation should include a descrip-
tion of the skills needed to use your system. For example, your users may
require training in your business domain or in basic computer skills, such
as using a mouse. This information is needed to develop training plans for
users and by support engineers when they are attempting to determine
the source of a problem. Quite often, support engineers will receive sup-
port calls where the solution is to give the user additional training.

6.8.2 How to Write User Documentation

What were you trying to do the last time you looked at a user manual?
You were likely trying to determine how to accomplish a task, a task that
probably would be described via a use case or activity diagram in your
analysis model. My experience is that the easiest way to write your user
documentation is to start with the models that describe how your users
work with your system: your use case model and your activity diagrams.
Use cases describe how users interact with your system and, as you saw in
Section 6.4, UML activity diagrams are often used to describe high-level
business logic. This is exactly the type of information your user docu-
mentation should reflect.

Start your user manual with a description of the system itself, probably
several paragraphs, information you likely have in your supplementary
specification. Then, add a section describing any high-level business

Chapter 6 • Determining What to Build: Object-Oriented Analysis 243

Reference manual. A document, either paper or electronic, aimed at experts
who need quick access to information.

Support user’s guide. A brief document, usually a single page, that describes
the support services for your application that are available to your user commu-
nity. This guide includes support phone numbers, fax numbers, and Web site
locations, as well as hours of operations and tips for obtaining the best services.

Tutorial. A document, either paper or electronic, aimed at novice users who
need to learn the fundamentals of an application.

User manual. A document, either paper or electronic, aimed at intermediate
users who understand the basics of an application, but who may not know how
to perform all applicable work tasks with the application.

D E F I N I T I O N S

The user
documentation
for your application
includes a tutorial
manual, a reference
manual, a user
manual, and a
support user’s
guide.

Your use cases and
activity diagrams
drive the
development of
your user
documentation.

processes, processes you should have documented the logic for using a
UML activity diagram. For large systems, you may find you have a section
for each UML package within your use case model or even a separate user
manual. Then, for each use case, add an appropriate subsection describing
it; the use case text will drive the body of that section. You will likely want
to combine steps into paragraphs to make your documentation more read-
able. Wherever you reference a UI element, you may decide to include a
relevant picture of that portion of your user interface (my suggestion is to
wait until you have baselined your user interface design before investing
the time to generate the pictures). You may also decide to replace refer-
ences to business rules with their descriptions to help increase your user’s
understanding of how the system actually works. Although many in the
industry call this a use case driven approach to writing user documenta-
tion, it really is a model-driven approach because your use cases simply
aren’t sufficient for this purpose.

Tutorials are developed in a similar manner to user manuals, although
a few differences exist. First, tutorials focus on the most critical uses of
the system, whereas a user manual should focus on the entire system.
Second, tutorials should have a more explicit focus on learning a prod-
uct, so they’ll include more detailed use instructions than a user manual
might. The assumption is that anyone using a tutorial likely knows little
about the system and, therefore, needs more help, whereas someone
using a user manual is probably familiar with the system itself, but needs
help with a specific aspect of it.

Your reference manual, because it has a slightly different purpose, is
generally driven by your user interface model, instead of your use cases
and activity diagrams. I generally include an overview of the system, sec-
tions for each major portion of your system, and subsections describing
the major user interface elements. The subsections should describe the
purpose of the relevant screen/report/page and how to work with it.

You will often hear advice within the software industry to write your
documentation before you write you code. Although this is a reasonably

244 The Object Primer

Writing is hard and writing good user documentation is even harder. It takes a
lot of effort and significant skill to do well, the type of skill technical writers
have. If possible, hire a technical writer to work with you to produce your user
documentation. This will improve the quality of your documentation and,
hence, the quality of your overall user interface, Hiring a technical writer will
also free you to focus on other development activities, such as modeling,
coding, and testing.

T I P

Hire a Technical
Writer

Your use cases,
activity diagrams,
and UI prototype
drive the develop-
ment of your user
manual and
tutorial.

Your user interface
model often drives
the development of
your reference
manual.

good practice, why do people give this advice? I believe the motivation is
that writing user documentation first forces you to think about how your
system will be used before you start to build it. My advice is different:
invest the time to understand your system by developing requirements for
it, analyzing it, and designing it, and then let this understanding drive the
development of your source code and your user documentation. I have
worked on several systems where we developed the user documentation in
parallel with the source code, not before it, and it worked out well.

6.9 Organizing Your Models with Packages

Packages are UML constructs that enable you to organize model elements
into groups, making your UML diagrams simpler and easier to under-
stand. Packages are depicted as file folders and can be used on any of the
UML diagrams, although they are most common on use case diagrams
and class diagrams because these models have a tendency to grow. I use
packages only when my diagrams become unwieldy, which generally
implies they cannot be printed on a single page, to organize a large dia-
gram into smaller ones. A good rule of thumb is that a diagram should
have 7 +/– 2 bubbles on it, a bubble being a use case or class.

So how do you identify packages on use case diagrams? I like to start
with use cases that are related to one another via extend and include
associations, my rule of thumb being that included and extended use
cases belong in the same package as the base/parent use case. This heuris-
tic works well because these use cases typically were introduced by
“pulling out” their logic from the base/parent use case to start. I then
analyze the use cases with which my main actors are involved. What you
find is each actor will interact with your system to fulfill a few main
goals; for example, students interact with your system to enroll in the
university, manage their schedules, and manage their financial obliga-
tions with the university. This suggests the need for an “Enrollment”
package, a “Student Schedule Management” package, and a “Student
Financial Management” package.

Chapter 6 • Determining What to Build: Object-Oriented Analysis 245

Anything you put into a package should make sense when considered with the
rest of the contents of the package. To determine whether a package is
cohesive, a good rule of thumb is you should be able to give your package a
short, descriptive name. If you can’t, then you may have put several unrelated
things into the package.

T I P

Packages
Should Be
Cohesive

Model before you
write your user
documentation
and source code.

With respect to class diagrams, I take a similar approach and, once
again, I apply several rules of thumb. First, classes in the same inheri-
tance hierarchy typically belong in the same package. Second, classes
related to one another via aggregation or composition often belong in
the same package. Third, classes that collaborate with each other a lot—
information reflected by your sequence diagrams and collaboration dia-
grams (Chapter 7)—often belong in the same package. Fourth, the desire
to make your packages cohesive will often drive your other decisions to
put a class into a package.

6.10 What You Have Learned

This chapter introduced you to the main artifacts of object-oriented
analysis (OOA) and their interrelationships, as depicted in Figure 6-1.
You learned that the purpose of analysis is to understand what will be
built, as opposed to the purpose of requirements gathering (Chapter 3),
which is to determine what your users would like to have built. The main
difference is that the focus of requirements gathering is on understand-
ing your users and their potential use of the system, whereas the focus of
analysis shifts to understanding the system itself.

In this chapter you saw how to apply the key object-oriented analysis
techniques: system use case modeling, sequence diagramming, class mod-
eling, activity diagramming, and user interface prototyping. In Chapter 7,
you see how your analysis efforts bridge the gap between requirements
and system design.

6.11 Review Questions

1. Develop system use cases for the use case diagram of Figure 3-10. Use
the essential use cases you developed for Question 1 in Chapter 3 as
your starting point.

2. Rework the class diagrams of Figures 6-15, 6-16, and 6-18 to include
the fact that professors also enroll in seminars exactly the way stu-
dents do. For the purpose of this question, focus on the associations

246 The Object Primer

Cohesion. The degree of relatedness within an encapsulated unit (such as a
component or a class).

Package. A UML construct that enables you to organize model elements into
groups.

D E F I N I T I O N S

between classes and the resulting opportunities for applying inheri-
tance, if any. Draw a new class diagram that includes the inheritance
hierarchy, assists association between “Professor” and “Seminar,” and
any new associations. Justify any new applications of inheritance.

3. Your coworker has two classes, A and B, and she knows some sort of
relationship exists between them. However, what she isn’t sure of is
whether it is an association, an aggregation association, a composi-
tion association, or an inheritance relationship. Develop a UML
activity diagram to help your coworker decide among the different
types of relationships.

4. The “Enroll in Seminar” use case, described in Figure 6-3, states that
when a student is not qualified to enroll in a seminar, a list of the
prerequisites for that seminar would be displayed. What changes to
the conceptual class diagram developed in Section 6.3 would need to
be made to support this feature? What association(s) did you need to
add? What do you think the multiplicities would be? Why? The
role(s)? Why? Is there more than one way to model this? If so, what
are the trade-offs?

5. Develop a UML activity model describing the business logic of the
“Enroll in Seminar” use case described in Figure 6-2. Be sure to include
the alternate courses described in the figure. Are any alternate courses
missing? If so, model them in your activity diagram. Is there any
opportunity for performing some activities in parallel?

6. Both Figures 6-20 and 6-24 showed a similar use of composition. A
component is potentially composed of other components and an
organization is potentially composed of other organizations. Discuss
why this may or may not indicate the existence of a “composition
pattern.” Has such a pattern been previously identified? (Do a search
of the patterns literature.)

7. Apply the Contact Point and Business Entity analysis patterns to
your class model for the university. Discuss how this has improved
your model. Has this detracted from your model in any way? If so,

Chapter 6 • Determining What to Build: Object-Oriented Analysis 247

Baseline. A tested and certified version of a deliverable representing a concep-
tual milestone, which, thereafter, serves as the basis for further development
and that can be modified only through formal change control procedures. A
particular version becomes a baseline when a responsible group decides to des-
ignate it as such.

D E F I N I T I O N

how? Do you need to verify this change with your SMEs? Why or
why not?

8. Develop sequence diagrams for your use cases in Question 1. As you
develop the sequence diagrams, update your conceptual class model
to reflect new operations or classes you identify. Also, update the
logic of your system use cases as appropriate.

9. Develop a conceptual class model for the bank case study, described
in Section 3.10.1, following the approach described in this chapter.
First, start with your CRC model, and then try to flesh it out as best
you can (develop sequence diagrams for the use cases you developed
in Chapter 3). When you have done so, baseline your model. You
may decide to organize your model using packages, as well as apply
common analysis patterns.

10. Compare and contrast the information content of your domain
model (your CRC model), and your conceptual class model for the
bank case study. What are the strengths and weaknesses of each
model? Why?

11. Compare and contrast the narrative style for writing use cases with
the action-response style. What are the advantages and disadvan-
tages of each? When would or wouldn’t you use each approach?

12. Search the Web for documentation templates for use cases, actors, and
user interface specifications. For use case templates, compare and con-
trast the content they capture with what has been suggested in this
book.

13. Search the Web for papers and information about object-oriented
analysis. Compare and contrast the various techniques. Formulate a
reason why differences exist among the various approaches and dis-
cuss the advantages and disadvantages of having different approaches
available to you.

248 The Object Primer

