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Type I and type II superstrings

Having spent volume one on a thorough development of the bosonic
string, we now come to our real interest, the supersymmetric string the-
ories. This requires a generalization of the earlier framework, enlarging
the world-sheet constraint algebra. This idea arises naturally if we try to
include spacetime fermions in the spectrum, and by guesswork we are led
to superconformal symmetry. In this chapter we discuss the (1,1) supercon-
formal algebra and the associated type I and II superstrings. Much of
the structure is directly parallel to that of the bosonic string so we can
proceed rather quickly, focusing on the new features.

10.1 The superconformal algebra

In bosonic string theory, the mass-shell condition

pµp
µ + m2 = 0 (10.1.1)

came from the physical state condition

L0|ψ〉 = 0 , (10.1.2)

and also from L̃0|ψ〉 = 0 in the closed string. The mass-shell condition
is the Klein–Gordon equation in momentum space. To get spacetime
fermions, it seems that we need the Dirac equation

ipµΓ
µ + m = 0 (10.1.3)

instead. This is one way to motivate the following generalization, and it
will lead us to all the known consistent string theories.

Let us try to follow the pattern of the bosonic string, where L0 and L̃0

are the center-of-mass modes of the world-sheet energy-momentum tensor
(TB, T̃B). A subscript B for ‘bosonic’ has been added to distinguish these
from the fermionic currents now to be introduced. It seems then that we
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2 10 Type I and type II superstrings

need new conserved quantities TF and T̃F , whose center-of-mass modes
give the Dirac equation, and which play the same role as TB and T̃B in
the bosonic theory. Noting further that the spacetime momenta pµ are the
center-of-mass modes of the world-sheet current (∂Xµ, ∂̄Xµ), it is natural
to guess that the gamma matrices, with algebra

{Γµ,Γν} = 2ηµν , (10.1.4)

are the center-of-mass modes of an anticommuting world-sheet field ψµ.
With this in mind, we consider the world-sheet action

S =
1

4π

∫
d2z

(
2

α′ ∂X
µ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
. (10.1.5)

For reference we recall from chapter 2 the XX operator product expansion
(OPE)

Xµ(z, z̄)Xν(0, 0) ∼ −α′
2
ηµν ln |z|2 . (10.1.6)

The ψ conformal field theory (CFT) was described in section 2.5. The
fields ψµ and ψ̃µ are respectively holomorphic and antiholomorphic, and
the operator products are

ψµ(z)ψν(0) ∼ ηµν

z
, ψ̃µ(z̄)ψ̃ν(0) ∼ ηµν

z̄
. (10.1.7)

The world-sheet supercurrents

TF (z) = i(2/α′)1/2ψµ(z)∂Xµ(z) , T̃F (z̄) = i(2/α′)1/2ψ̃µ(z̄)∂̄Xµ(z̄) (10.1.8)

are also respectively holomorphic and antiholomorphic, since they are just
the products of (anti)holomorphic fields. The annoying factors of (2/α′)1/2
could be eliminated by working in units where α′ = 2, and then be restored
if needed by dimensional analysis. Also, throughout this volume the : :
normal ordering of coincident operators will be implicit.

This gives the desired result: the modes ψ
µ
0 and ψ̃

µ
0 will satisfy the

gamma matrix algebra, and the centers-of-mass of TF and T̃F will have
the form of Dirac operators. We will see that the resulting string theory
has spacetime fermions as well as bosons, and that the tachyon is gone.

From the OPE and the Ward identity it follows (exercise 10.1) that the
currents

jη(z) = η(z)TF (z) , j̃η(z̄) = η(z) T̃F (z̄) (10.1.9)

generate the superconformal transformation

ε−1(2/α′)1/2δXµ(z, z̄) = η(z)ψµ(z)

−
η(z)∗ψ̃µ(z̄) , (10.1.10a)

ε−1(α′/2)1/2δψµ(z) = η(z)∂Xµ(z) , (10.1.10b)

ε−1(α′/2)1/2δψ̃µ(z̄) = η(z)∗∂̄Xµ(z̄) . (10.1.10c)

∗

+

−

+
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10.1 The superconformal algebra 3

This transformation mixes the commuting field Xµ with the anticommut-
ing fields ψµ and ψ̃µ, so the parameter η(z) must be anticommuting. As
with conformal symmetry, the parameters are arbitrary holomorphic or
antiholomorphic functions. That this is a symmetry of the action (10.1.5)
follows at once because the current is (anti)holomorphic, and so con-
served.

The commutator of two superconformal transformations is a conformal
transformation,

δη1
δη2

− δη2
δη1

= δv , v(z) = −2η1(z)η2(z) , (10.1.11)

as the reader can check by acting on the various fields. Similarly, the
commutator of a conformal and superconformal transformation is a su-
perconformal transformation. The conformal and superconformal trans-
formations thus close to form the superconformal algebra. In terms of the
currents, this means that the OPEs of TF with itself and with

TB = − 1

α′ ∂X
µ∂Xµ − 1

2
ψµ∂ψµ (10.1.12)

close. That is, only TB and TF appear in the singular terms:

TB(z)TB(0) ∼ 3D

4z4
+

2

z2
TB(0) +

1

z
∂TB(0) , (10.1.13a)

TB(z)TF (0) ∼ 3

2z2
TF (0) +

1

z
∂TF (0) , (10.1.13b)

TF (z)TF (0) ∼ D

z3
+

2

z
TB(0) , (10.1.13c)

and similarly for the antiholomorphic currents. The TBTF OPE implies
that TF is a tensor of weight (3

2 , 0). Each scalar contributes 1 to the central

charge and each fermion 1
2 , for a total

c = (1 + 1
2)D = 3

2D . (10.1.14)

This enlarged algebra with TF and T̃F as well as TB and T̃B will play
the same role that the conformal algebra did in the bosonic string. That
is, we will impose it on the states as a constraint algebra — it must
annihilate physical states, either in the sense of old covariant quantization
(OCQ) or of Becchi–Rouet–Stora–Tyutin (BRST) quantization. Because
of the Minkowski signature of spacetime the timelike ψ0 and ψ̃0, like
X0, have opposite sign commutators and lead to negative norm states.
The fermionic constraints TF and T̃F will remove these states from the
spectrum.

More generally, the N = 1 superconformal algebra in operator product
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4 10 Type I and type II superstrings

form is

TB(z)TB(0) ∼ c

2z4
+

2

z2
TB(0) +

1

z
∂TB(0) , (10.1.15a)

TB(z)TF (0) ∼ 3

2z2
TF (0) +

1

z
∂TF (0) , (10.1.15b)

TF (z)TF (0) ∼ 2c

3z3
+

2

z
TB(0) . (10.1.15c)

The Jacobi identity requires the same constant c in the TBTB and TFTF

products (exercise 10.5). Here, N = 1 refers to the number of (3
2 , 0)

currents. In the present case there is also an antiholomorphic copy of the
same algebra, so we have an (N, Ñ) = (1, 1) superconformal field theory
(SCFT). We will consider more general algebras in section 11.1.

Free SCFTs

The various free CFTs described in chapter 2 have superconformal gen-
eralizations. One free SCFT combines an anticommuting bc theory with
a commuting βγ system, with weights

hb = λ , hc = 1 − λ , (10.1.16a)

hβ = λ − 1
2 , hγ = 3

2 − λ . (10.1.16b)

The action is

SBC =
1

2π

∫
d2z (b∂̄c + β∂̄γ) , (10.1.17)

and

TB = (∂b)c − λ∂(bc) + (∂β)γ − 1

2
(2λ − 1)∂(βγ) , (10.1.18a)

TF = −1

2
(∂β)c +

2λ − 1

2
∂(βc) − 2bγ . (10.1.18b)

The central charge is

[−3(2λ − 1)2 + 1] + [3(2λ − 2)2 − 1] = 9 − 12λ . (10.1.19)

Of course there is a corresponding antiholomorphic theory.
We can anticipate that the superconformal ghosts will be of this form

with λ = 2, the anticommuting (2, 0) ghost b being associated with the
commuting (2, 0) constraint TB as in the bosonic theory, and the commut-
ing (3

2 , 0) ghost β being associated with the anticommuting (3
2 , 0) constraint

TF . The ghost central charge is then −26 + 11 = −15, and the condition
that the total central charge vanish gives the critical dimension

0 =
3

2
D − 15 ⇒ D = 10 . (10.1.20)
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10.2 Ramond and Neveu–Schwarz sectors 5

For λ = 2,

TB = −(∂b)c − 2b∂c − 1

2
(∂β)γ − 3

2
β∂γ , (10.1.21a)

TF = (∂β)c +
3

2
β∂c − 2bγ . (10.1.21b)

Another free SCFT is the superconformal version of the linear dilaton
theory. This has again the action (10.1.5), while

TB(z) = − 1

α′ ∂X
µ∂Xµ + Vµ∂

2Xµ − 1

2
ψµ∂ψµ , (10.1.22a)

TF (z) = i(2/α′)1/2ψµ∂Xµ − i(2α′)1/2Vµ∂ψ
µ , (10.1.22b)

each having an extra term as in the bosonic case. The reader can verify
that these satisfy the N = 1 algebra with

c =
3

2
D + 6α′VµVµ . (10.1.23)

10.2 Ramond and Neveu–Schwarz sectors

We now study the spectrum of the Xµψµ SCFT on a circle. Much of this
is as in chapter 2, but the new ingredient is a more general periodicity
condition. It is clearest to start with the cylindrical coordinate w = σ1+iσ2.
The matter fermion action

1

4π

∫
d2w

(
ψµ∂w̄ψµ + ψ̃µ∂wψ̃

)
(10.2.1)

must be invariant under the periodic identification of the cylinder, w ∼=
w + 2π. This condition plus Lorentz invariance still allows two possible
periodicity conditions for ψµ,

Ramond (R): ψµ(w + 2π) = +ψµ(w) , (10.2.2a)

Neveu–Schwarz (NS): ψµ(w + 2π) = −ψµ(w) , (10.2.2b)

where the sign must be the same for all µ. Similarly there are two possible
periodicities for ψ̃µ. Summarizing, we will write

ψµ(w + 2π) = exp(2πiν)ψµ(w) , (10.2.3a)

ψ̃µ(w̄ + 2π) = exp(−2πiν̃) ψ̃µ(w̄) , (10.2.3b)

where ν and ν̃ take the values 0 and 1
2 .

Since we are initially interested in theories with the maximum Poincaré
invariance, Xµ must be periodic. (Antiperiodicity of Xµ is interesting, and
we have already encountered it for the twisted strings on an orbifold, but
it would break some of the translation invariance.) The supercurrent then

µ
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6 10 Type I and type II superstrings

has the same periodicity as the corresponding ψ,

TF (w + 2π) = exp(2πiν)TF (w) , (10.2.4a)

T̃F (w̄ + 2π) = exp(−2πiν̃) T̃F (w̄) . (10.2.4b)

Thus there are four different ways to put the theory on a circle, each of
which will lead to a different Hilbert space — essentially there are four
different kinds of closed superstring. We will denote these by (ν, ν̃) or
by NS–NS, NS–R, R–NS, and R–R. They are analogous to the twisted
and untwisted sectors of the Z2 orbifold. Later in the chapter we will
see that consistency requires that the full string spectrum contain certain
combinations of states from each sector.

To study the spectrum in a given sector expand in Fourier modes,

ψµ(w) = i−1/2
∑

r∈Z+ν

ψµ
r exp(irw) , ψ̃µ(w̄) = i1/2

∑
r∈Z+ν̃

ψ̃µ
r exp(−irw̄) ,

(10.2.5)
the phase factors being inserted to conform to convention later. On each
side the sum runs over integers in the R sector and over (integers + 1

2)
in the NS sector. Let us also write these as Laurent expansions. Besides
replacing exp(−iw) → z we must transform the fields,

ψ
µ

z1/2(z) = (∂zw)1/2ψ
µ

w1/2(w) = i1/2z−1/2ψ
µ

w1/2(w) . (10.2.6)

The clumsy subscripts are a reminder that these transform with half the
weight of a vector. Henceforth the frame will be indicated implicitly by
the argument of the field. The Laurent expansions are then

ψµ(z) =
∑

r∈Z+ν

ψµ
r

zr+1/2
, ψ̃µ(z̄) =

∑
r∈Z+ν̃

ψ̃µ
r

z̄r+1/2
. (10.2.7)

Notice that in the NS sector, the branch cut in z−1/2 offsets the original
antiperiodicity, while in the R sector it introduces a branch cut. Let us
also recall the corresponding bosonic expansions

∂Xµ(z) = −i

(
α′
2

)1/2 ∞∑
m=−∞

αµm
zm+1

, ∂̄Xµ(z̄) = −i

(
α′
2

)1/2 ∞∑
m=−∞

α̃µm
z̄m+1

,

(10.2.8)
where α

µ
0 = α̃

µ
0 = (α′/2)1/2pµ in the closed string and α

µ
0 = (2α′)1/2pµ in the

open string.

The OPE and the Laurent expansions (or canonical quantization) give
the anticommutators

{ψµ
r , ψ

ν
s } = {ψ̃µ

r , ψ̃
ν
s } = ηµνδr,−s , (10.2.9a)

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm,−n . (10.2.9b)
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10.2 Ramond and Neveu–Schwarz sectors 7

For TF and TB the Laurent expansions are

TF (z) =
∑

r∈Z+ν

Gr

zr+3/2
, T̃F (z̄) =

∑
r∈Z+ν̃

G̃r

z̄r+3/2
, (10.2.10a)

TB(z) =
∞∑

m=−∞
Lm

zm+2
, T̃B(z̄) =

∞∑
m=−∞

L̃m

z̄m+2
. (10.2.10b)

The usual CFT contour calculation gives the mode algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm,−n , (10.2.11a)

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − 1)δr,−s , (10.2.11b)

[Lm,Gr] =
m − 2r

2
Gm+r . (10.2.11c)

This is known as the Ramond algebra for r, s integer and the Neveu–
Schwarz algebra for r, s half-integer. The antiholomorphic fields give a
second copy of these algebras.

The superconformal generators in either sector are

Lm =
1

2

∑
n∈Z

◦◦α
µ
m−nαµ n

◦◦ +
1

4

∑
r∈Z+ν

(2r − m) ◦◦ψ
µ
m−rψµ r

◦◦ + amδm,0 ,

(10.2.12a)

Gr =
∑
n∈Z

αµnψµ r−n . (10.2.12b)

Again ◦◦ ◦◦ denotes creation–annihilation normal ordering. The normal
ordering constant can be obtained by any of the methods from chapter 2;
we will use here the mnemonic from the end of section 2.9. Each periodic
boson contributes − 1

24 . Each periodic fermion contributes + 1
24 and each

antiperiodic fermion − 1
48 . Including the shift + 1

24c = 1
16D gives

R: am =
1

16
D , NS: am = 0 . (10.2.13)

For the open string, the condition that the surface term in the equation
of motion vanish allows the possibilities

ψµ(0, σ2) = exp(2πiν) ψ̃µ(0, σ2) , ψµ(π, σ2) = exp(2πiν ′) ψ̃µ(π, σ2) .
(10.2.14)

By the redefinition ψ̃µ → exp(−2πiν ′)ψ̃µ, we can set ν ′ = 0. There are
therefore two sectors, R and NS, as compared to the four of the closed
string. To write the mode expansion it is convenient to combine ψµ and
ψ̃µ into a single field with the extended range 0 ≤ σ1 ≤ 2π. Define

ψµ(σ1, σ2) = ψ̃µ(2π − σ1, σ2) (10.2.15)

for π ≤ σ1 ≤ 2π. The boundary condition ν ′ = 0 is automatic, and the
antiholomorphicity of ψ̃µ implies the holomorphicity of the extended ψµ.
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8 10 Type I and type II superstrings

Finally, the boundary condition (10.2.14) at σ1 = 0 becomes a periodicity
condition on the extended ψµ, giving one set of R or NS oscillators and
the corresponding algebra.

NS and R spectra

We now consider the spectrum generated by a single set of NS or R
modes, corresponding to the open string or to one side of the closed
string. The NS spectrum is simple. There is no r = 0 mode, so we define
the ground state to be annihilated by all r > 0 modes,

ψµ
r |0〉NS = 0 , r > 0 . (10.2.16)

The modes with r < 0 then act as raising operators; since these are
anticommuting, each mode can only be excited once.

The main point of interest is the R ground state, which is degenerate
due to the ψ

µ
0 s. Define the ground states to be those that are annihilated by

all r > 0 modes. The ψ
µ
0 satisfy the Dirac gamma matrix algebra (10.1.4)

with

Γµ ∼= 21/2ψ
µ
0 . (10.2.17)

Since {ψµ
r , ψ

ν
0} = 0 for r > 0, the ψ

µ
0 take ground states into ground

states. The ground states thus form a representation of the gamma matrix
algebra. This representation is worked out in section B.1; in D = 10 it has
dimension 32. The reader who is not familiar with properties of spinors
in various dimensions should read section B.1 at this point. We can take
a basis of eigenstates of the Lorentz generators Sa, eq. (B.1.10):

|s0, s1, . . . , s4〉R ≡ |s〉R , sa = ± 1
2 . (10.2.18)

The half-integral values show that these are indeed spacetime spinors. A
more general basis for the spinors would be denoted |α〉R. In the R sector
of the open string not only the ground state but all states have half-integer
spacetime spins, because the raising operators are vectors and change the
Sa by integers. In the NS sector, the ground state is annihilated by Sµν

and is a Lorentz singlet, and all other states then have integer spin.
The Dirac representation 32 is reducible to two Weyl representations

16 + 16′, distinguished by their eigenvalue under Γ as in eq. (B.1.11). This
has a natural extension to the full string spectrum. The distinguishing
property of Γ is that it anticommutes with all Γµ. Since the Dirac matrices
are now the center-of-mass modes of ψµ, we need an operator that
anticommutes with the full ψµ. We will call this operator

exp(πiF) , (10.2.19)

where F , the world-sheet fermion number, is defined only mod 2. Since ψµ

changes F by one it anticommutes with the exponential. It is convenient
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10.2 Ramond and Neveu–Schwarz sectors 9

to write F in terms of spacetime Lorentz generators, which in either sector
of the ψ CFT are

Σµλ = − i

2

∑
r∈Z+ν

[ψµ
r , ψ

λ−r] . (10.2.20)

This is the natural extension of the zero-mode part (B.1.8). Define now

Sa = iδa,0Σ2a,2a+1 , (10.2.21)

the i being included to make S0 Hermitean, and let

F =
4∑

a=0

Sa . (10.2.22)

This has the desired property. For example,

S1(ψ
2
r ± iψ3

r ) = (ψ2
r ± iψ3

r )(S1 ± 1) , (10.2.23)

so these oscillators change F by ±1. The definition (10.2.22) makes it
obvious that F is conserved by the OPE of the vertex operators, as a
consequence of Lorentz invariance.1 When we include the ghost part of
the vertex operator in section 10.4, we will see that it contributes to the
total F , so that on the total matter plus ghost ground state one has

exp(πiF)|0〉NS = −|0〉NS , (10.2.24a)

exp(πiF)|s〉R = |s′〉RΓs′s . (10.2.24b)

The ghost ground state contributes a factor −1 in the NS sector and −i

in the R sector.

Closed string spectra

In the closed string, the NS–NS states have integer spin. Because the spins
Sa are additive, the half-integers from the two sides of the R–R sector also
combine to give integer spin. The NS–R and R–NS states, on the other
hand, have half-integer spin.

Let us look in more detail at the R–R sector, where the ground states
|s, s′〉R are degenerate on both the right and left. They transform as the
product of two Dirac representations, which is worked out in section B.1:

32Dirac × 32Dirac = [0] + [1] + [2] + . . . + [10]

= [0]2 + [1]2 + . . . + [4]2 + [5] , (10.2.25)

1 Lorentz invariance of the OPE holds separately for the ψ and X CFTs (and the ψ̃ CFT
in the closed string) because they are decoupled from one another. However, the world-sheet
supercurrent is only invariant under the overall Lorentz transformation.
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10 10 Type I and type II superstrings

Table 10.1. SO(9, 1) representations of massless R–R states.

(exp(πiF), exp(πiF̃)) SO(9, 1) rep.

(+1,+1): 16 × 16 = [1] + [3] + [5]+
(+1,−1): 16 × 16′ = [0] + [2] + [4]

(−1,+1): 16′ × 16 = [0] + [2] + [4]

(−1,−1): 16′ × 16′ = [1] + [3] + [5]−

where [n] denotes an antisymmetric rank n tensor. For the closed string
there are separate world-sheet fermion numbers F and F̃ , which on the
ground states reduce to the chirality matrices Γ and Γ̃ acting on the two
sides. The ground states thus decompose as in table 10.1.

10.3 Vertex operators and bosonization

Consider first the unit operator. Fields remain holomorphic at the ori-
gin, and in particular they are single-valued. From the Laurent expan-
sion (10.2.7), the single-valuedness means that the unit operator must be
in the NS sector; the conformal transformation that takes the incoming
string to the point z = 0 cancels the branch cut from the antiperiodicity.
The holomorphicity of ψ at the origin implies, via the contour argument,
that the state corresponding to the unit operator satisfies

ψµ
r |1〉 = 0 , r =

1

2
,
3

2
, . . . , (10.3.1)

and therefore

|1〉 = |0〉 . (10.3.2)

Since the ψψ OPE is single-valued, all products of ψ and its derivatives
must be in the NS sector. The contour argument gives the map

ψ
µ−r → 1

(r − 1/2)!
∂r−1/2ψµ(0) , (10.3.3)

so that there is a one-to-one map between such products and NS states.
The analog of the Noether relation (2.9.6) between the superconformal
variation of an NS operator and the OPE is

δηA(z, z̄) = −ε
∞∑
n=0

1

n!

[
∂nη(z)Gn−1/2 + (∂nη(z))∗G̃n−1/2

]
· A(z, z̄) . (10.3.4)

The R sector vertex operators must be more complicated because the
Laurent expansion (10.2.7) has a branch cut. We have encountered this
before, for the winding state vertex operators in section 8.2 and the orbifold
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