Astrophotography for the Amateur

Second edition

MICHAEL A. COVINGTON

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK http://www/cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1999

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press

First published 1999

Printed in the United Kingdom at the University Press, Cambridge

Typeset in Akzidenz Grotesk 9/12 in Advent 3B2 [KW]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Covington, Michael A., 1957– Astrophotography for the amateur / Michael A. Covington. – 2nd ed. p. cm. Includes bibliographical references. ISBN 0 521 64133 0. – ISBN 0 521 62740 0 (pbk.) 1. Astronomical photography – Amateurs' manuals. I. Title. QB121.C68 1999 522'.63–dc21 98-20464 CIP

ISBN 0 521 64133 0 hardback ISBN 0 521 62740 0 paperback

Contents

	face		xi xiii		3.7	Zodia
	lotes to the reader Symbols used in formulae				20	lunar
Syr	ndois us		xiv		3.8	All-sk
				4	The m	oon
	C 1 M F				4.1	Lense
I	SIMP	PLE TECHNIQUES	1		4.2	Using
					4.3	BASIC
1	Welco	me to astrophotography	3			moor
	1.1	The challenge of astrophotography	З		4.4	Dete
	1.2	Choosing equipment	3		4.5	PRACT
	1.3	Sharing your work with others	5		4.6	Afoca
	1.4	Maintaining balance and enjoyment	7			binoc
		с <i>,,</i> ,			4.7	BASIC
						moor
2	Photo	graphing stars without a telescope	8		4.8	Films
	2.1	Stars and trails	8	_		
	2.2	BASIC TECHNIQUE 1: Photographing stars		5	Eclips	
		without a telescope	10		5.1	Luna
	2.3	How long can you expose?	10		5.2	Luna
	2.4	PRACTICAL NOTE: How to approach			5.3	Luna
		formulae	12		5.4	Video
	2.5	Choice of camera and lens	12		5.5	BASIC
	2.6	Slides versus prints	14			eclip
	2.7	PRACTICAL NOTE: Getting good color prints	14		5.6	Solar
	2.8	Getting the most out of your film	15		5.7	Eclip
	2.9	Keeping records	16		5.8	PRACT
	2.10	PRACTICAL NOTE: Film and false economy	18			happ
	2.11	Interpreting your pictures scientifically	19		5.9	BASIC
						by pr
					5.10	Safe
3		s, meteors, aurorae, and space dust	21		5.11	Phote
	3.1	Comets	21		5.12	BASIC
	3.2	BASIC TECHNIQUE 2: Photographing a brigh				partia
		comet	25		5.13	Solar
	3.3	Meteors	25		5.14	Shad
	3.4	BASIC TECHNIQUE 3: Photographing a meter	or		5.15	BASIC
		shower	26			total
	3.5	Aurorae	28		5.16	Sess
	3.6	BASIC TECHNIQUE 4: Photographing the			5.17	Video
		aurora borealis	28		5.18	The 1

	xi		3.7	Zodiacal light, Gegenschein, and	
	xiii			lunar libration clouds	28
	xiv		3.8	All-sky cameras	33
		4	The m	oon	35
			4.1	Lenses and image size	35
	1		4.2	Using a telephoto lens	35
			4.3	BASIC TECHNIQUE 5: Photographing the	00
			1.0	moon through a telephoto lens	37
	3		4.4	Determining exposures	38
	3		4.5	PRACTICAL NOTE: What is a "stop"?	39
	3		4.6	Afocal coupling to telescopes and	
	5			binoculars	40
	7		4.7	BASIC TECHNIQUE 6: Photographing the	
				moon (afocal method)	43
	8		4.8	Films and processing	44
	0 8				
s	0	5	Eclipse	es	46
3	10		- 5.1	Lunar eclipses	46
	10		5.2	Lunar eclipse dates and times	47
	10		5.3	Lunar eclipse photography	48
	12		5.4	Videotaping a lunar eclipse	50
	12		5.5	BASIC TECHNIQUE 7: Photographing an	
	14			eclipse of the moon	52
ints	14		5.6	Solar eclipses – partial and annular	52
	15		5.7	Eclipse safety	54
	16		5.8	PRACTICAL NOTE: How eclipse eye injuries	
ıy	18			happen	55
í	19		5.9	BASIC TECHNIQUE 8: Viewing a solar eclips	e
				by projection	55
			5.10	Safe solar filters	56
t	21		5.11	Photographing partial solar eclipses	60
	21		5.12	BASIC TECHNIQUE 9: Photographing a	
righ	t			partial solar eclipse	60
	25		5.13	Solar eclipses – total	60
	25		5.14	Shadow bands and other phenomena	62
ete	or		5.15	BASIC TECHNIQUE 10: Photographing a	
	26			total solar eclipse	63
	28		5.16	Session planning	63
			5.17	Videotaping solar eclipses	63
	28		5.18	The 1999 total eclipse in Europe	65

VIII CONTENTS

II ADVANCED TECHNIQUES

6	Coupli	ing cameras to telescopes	69
	6.1	Prime-focus astrophotography	69
	6.2	Telescope types and optical	
		limitations	70
	6.3	Image size and field of view	73
	6.4	Afocal coupling	75
	6.5	Positive projection	77
	6.6	PRACTICAL NOTE: Measuring s_2 for	
		eyepiece projection	79
	6.7	Negative projection	80
	6.8	Compression (focal reducers)	82
	6.9	Combinations of projection setups	83
	6.10	Diffraction-limited resolution	84
	6.11	The subtle art of focusing	85
	6.12	Camera viewfinders	86
	6.13	PRACTICAL NOTE: Does your SLR focus	
		accurately?	88
	6.14	Aerial-image and crosshair focusing	89
	6.15	Knife-edge focusing	89
	6.16	How accurately must we focus?	90
	6.17	Focusing Schmidt-Cassegrains and	
		Maksutovs	91
7	The so	olar system	93
	7.1	Film or CCD?	93
	7.2	The challenge of high resolution	93
	7.3.	Tracking	94
	7.4	Vibration	96
	7.5	Unsteady air	97
	7.6	Dew	98
	7.7	The sun	100
	7.8	The moon	103
	7.9	Planetary photography	106
	7.10	The individual planets	107
	7.11	BASIC TECHNIQUE 11: Photographing a	
		planet (afocal method)	111
	7.12	BASIC TECHNIQUE 12: Photographing a	
		planet (by projection)	112

8	Deep-	sky photography	113
	8.1	Piggy-backing	114
	8.2	BASIC TECHNIQUE 13: Piggy-back	
		deep-sky photography	114
	8.3	BASIC TECHNIQUE 14: Polar alignment	
		procedure	118
	8.4	Barn-door trackers	120
	8.5	Lenses for deep-sky work	121
	8.6	Scale enlargement and edge-of-field	
		fall-off	124
	8.7	Magnitude limits and surface	
		brightness	126
	8.8	Guiding	130
	8.9	PRACTICAL NOTE: What do you mean by	
		12 volts?	132
	8.10	Polar alignment accuracy	133
	8.11	Periodic gear error, PEC, and	
		autoguiding	134
	8.12	Choice of film	135
	8.13	Light pollution and nebula filters	137
	8.14	PRACTICAL NOTE: The campaign against	
		light pollution	139
	8.15	Deep-sky photography through the	
		telescope	142
	8.16	BASIC TECHNIQUE 15: Deep-sky	
		photography with an off-axis guider	144
	8.17	Keeping warm while observing	145
	8.18	Safety and etiquette at the observing	
		site	145
	8.19	Mosquitoes and other vermin	146

8 III PHOTOGRAPHIC TECHNOLOGY 149

03	9	Camer	as, lenses, and telescopes	151
06		9.1	The 35-mm SLR	151
07		9.2	Choosing an SLR	152
		9.3	Olympus SLRs	154
11		9.4	Nikon SLRs	155
		9.5	Other SLR makers	156
12		9.6	Buying used cameras	157

9.7	Camera maintenance and repair	158
9.8	Some miscellaneous SLR hints	159
9.9	Other types of cameras	160
9.10	Special astrocameras	161
9.11	Lenses	162
9.12	Lens quality and performance	164
9.13	Lens mounts	165
9.14	Buying lenses	166
9.15	BASIC TECHNIQUE 16: Testing lenses	167
9.16	Lens repair	169
9.17	Choosing a telescope	169
9.18	PRACTICAL NOTE: Does a lower f-ratio	
	give a brighter image?	170
9.19	Telescope quality and performance	171
9.20	BASIC TECHNIQUE 17: Star-testing a	
	telescope	171
9.21	How to clean optics	172

10 Film

Film		174
10.1	How film works	174
10.2	Spectral sensitivity	175
10.3	The characteristic curve	177
10.4	Film speed	179
10.5	Reciprocity failure: theory	180
10.6	Reciprocity failure: measurement	181
10.7	PRACTICAL NOTE: Does film "give up"	
	after a certain amount of time?	184
10.8	Hypersensitization	184
10.9	Graininess and resolution	186
10.10	Some specific films	187
10.11	PRACTICAL NOTE: Film: What's in a name?	192
10.12	PRACTICAL NOTE: Is "professional" film	
	better?	192
10.13	Bulk loading	193

11		oping, printing, and photographic cement
	11.1	The darkroom

11.1	The darkroom	195
11.2	Developing black-and-white film	196
11.3	Black-and-white printing	201

11.4	PRACTICAL NOTE: Color negatives on	
	black-and-white paper?	203
11.5	Making high-contrast prints	204
11.6	Unsharp masking	205
11.7	Processing color film	206
11.8	PRACTICAL NOTE: Help! The film is	
	scratched!	207
11.9	Slide duplication	207
11.10	Rephotography	210

IV DIGITAL IMAGING 213

12	Comp	uter image enhancement	215
	12.1	How computers represent images	216
	12.2	Resolution and image size	218
	12.3	PRACTICAL NOTE: How images get	
		resized	220
	12.4	File compression	220
	12.5	File formats	222
	12.6	Getting images into the computer	222
	12.7	Scanner artifacts	223
	12.8	PRACTICAL NOTE: Taking pictures that	
		scan well	224
	12.9	The ethics of retouching	224
	12.10	Manipulating the characteristic curve	225
	12.11	Working with histograms	229
	12.12	Manipulating color	229
	12.13	Enhancing detail	230
	12.14	PRACTICAL NOTE: An example of digital	
		enhancement	231
	12.15	Combining images	231
	12.16	Printing out the results	231
	12.17	Image enhancement theory: spatial	
		frequency	232
	12.18	PRACTICAL NOTE: Signal and noise	233
	12.19	Convolutions, 1: smoothing	233
	12.20	PRACTICAL NOTE: Median filters	236
	12.21	Convolutions, 2: sharpening	237
	12.22	The Laplacian operator	238

X CONTENTS

	12.23	PRACTICAL NOTE: Convolution or	
		deconvolution?	239
	12.24	Maximum-entropy deconvolution	239
13	CCD ir	naging	241
	13.1	How CCDs work	242
	13.2	Video and digital cameras	243
	13.3	Astronomical CCD cameras	244
	13.4	Field of view	244
	13.5	Aiming and focusing	246
	13.6	Exposure	247
	13.7	Optimal focal length	248
	13.8	BASIC TECHNIQUE 18: Imaging the moon	
		or a planet	249
	13.9	Flat-fielding	250
	13.10	Calibration frames	251
	13.11	Deep-sky work	253
	13.12	Choosing a CCD camera	253
	APPE	ENDICES	257
Α	Expos	ure tables	
	A.1	How exposures are calculated	259
	A.2	Obtaining B from photometric	
		brightness	259
	A.3	Other systems for calculating exposure	260
	A.4	PRACTICAL NOTE: Why don't my results	
		agree with the tables?	260
	A.5	Moon and lunar eclipses	261
	A.6	Sun and solar eclipses	266
	A.7	Planets	269
	A.8	Faint objects	273
в	Mathe	matical analysis of polar-axis	
	misali	gnment	276
		Summary of the most important results	076

	B.2	Declination drift	276
	B.3	Field rotation	279
	B.4	Computer algorithms	281
с	Plans	for an electronic drive corrector	283
	C.1	How it works	283
	C.2	Circuits and parts list	286
	C.3	Adaptation to 240 V, 50 Hz	287
	C.4	Drive rates	288
	C.5	Line power supply	288
	C.6		289
D	Film d	ata	290
	D.1	Kodak Technical Pan film (TP)	291
	D.2	Kodak Professional Ektachrome Film	
		E200	298
	D.3	Kodak Professional Ektapress Films	306
Е	Photo	graphic filters	307
	E.1	High-efficiency yellow, oranges, and reds	307
	E.2	Other sharp-cutoff filters	307
		Color balancing filters	308
		Other filters	210
	E.4	Other filters	310
F	Organ	izations and resources	311
F	Organ F.1	izations and resources Organizations	311 311
F	Organ F.1 F.2	izations and resources Organizations Internet resources	311 311 312
F	Organ F.1 F.2 F.3	izations and resources Organizations Internet resources Magazines	311 311 312 312
F	Organ F.1 F.2 F.3 F.4	izations and resources Organizations Internet resources Magazines Manufacturers	311 311 312 312 313
F	Organ F.1 F.2 F.3 F.4 F.5	izations and resources Organizations Internet resources Magazines Manufacturers Dealers	311 311 312 312 313 315
F	Organ F.1 F.2 F.3 F.4	izations and resources Organizations Internet resources Magazines Manufacturers	311 311 312 312 313
Bib	Organ F.1 F.2 F.3 F.4 F.5 F.6	izations and resources Organizations Internet resources Magazines Manufacturers Dealers Camera repairs and modifications	311 312 312 313 315 315 317 318
Bik	Organ F.1 F.2 F.3 F.4 F.5 F.6	izations and resources Organizations Internet resources Magazines Manufacturers Dealers Camera repairs and modifications	311 312 312 313 315 317 318 325

B.1 Summary of the most important results 276 Colour plates

Welcome to astrophotography

Welcome to astrophotography! This book is for people who want to take pictures of the stars and planets, and, perhaps more importantly, who want to understand how astrophotography works. The earlier chapters contain instructions for beginners, and the later chapters are more like a reference book.

My goal is to show you how to do astrophotography at modest cost, with the equipment and materials an amateur can easily obtain and use. I haven't covered everything. I've concentrated on 35-mm cameras and relatively inexpensive telescopes, 20-cm (8-inch) and smaller. Techniques that require unusual skill or expenditure are mentioned only briefly with references to other sources of information.

1.1 The challenge of astrophotography

Why photograph the sky? Because of the great natural beauty of celestial objects, because your pictures can have scientific value, and, perhaps most importantly, because you enjoy the technical challenge. Astrophotography will never be a matter of just taking snapshots, and Kodak's old slogan, "You press the button, we do the rest," certainly doesn't apply. Astrophotographers push the limits of their equipment and materials, and a good astrophotographer has to know optics and film the way a race-car driver knows engines. There are three main technical challenges:

- Most celestial objects require magnification; that's one reason we use telescopes. (Not all objects require magnification; star fields, meteors, and bright comets can be photographed with your camera's normal lens.)
- Many celestial objects are faint, requiring long exposures to accumulate light on the film. In fact, astronomical discoveries have been made this

way; the Horsehead Nebula and Barnard's Loop are too faint to see with any telescope, but are not too hard to photograph.

Whenever high magnification or long exposures are involved, the rotation of the earth gets in the way by making the sky seem to move continuously. To compensate for this motion, telescopes have equatorial mounts and drive motors. Sometimes the camera rides "piggyback" on the telescope while taking a picture through its own lens (Fig. 1.2).

Almost everything in this book deals with how to overcome one, two, or all three of these challenges in a particular situation. It's not always easy; some kinds of astrophotography are much harder than others, and I present the easier techniques first.

Fortunately, you don't have to master the hardest techniques in order to get impressive pictures. Piggybacking and moon photography are particularly rewarding even though they require only modest effort and simple equipment. Photographing galaxies is especially hard; so is high-resolution photography of the planets.

1.2 Choosing equipment

Never buy a telescope or camera unless you understand exactly what it will do for you and how it will do it. Always educate yourself first, because the equipment doesn't take the pictures; *you* do. Chapter 9 gives detailed advice on choosing cameras and telescopes, but your knowledge should always run ahead of your equipment.

Learn the sky before buying a telescope. It goes without saying that if you can't point your finger at M31 or the Orion Nebula, you won't be able to point a telescope at them either. I usually tell young amateur astronomers that they're not ready for a telescope until they can identify at least five constellations and three

4 WELCOME TO ASTROPHOTOGRAPHY

Figure 1.1 The moon photographed at the prime focus of a 12.5-cm (5-inch) f/10 Schmidt-Cassegrain telescope. A half-second exposure on Kodak Technical Pan Film developed in Technidol LC; clock drive running. (By the author)

Figure 1.2 The author gets ready to photograph star fields with a camera and 180-mm lens mounted "piggy-back" on a 20-cm (8-inch) Schmidt-Cassegrain telescope. (Melody Covington)

interesting objects (planets, star clusters, or the like) without a map. Don't be seduced by computercontrolled telescopes; they save time if you have a busy observing program, but you can't use them effectively unless you already know the sky.

Full advice for beginning stargazers is beyond the scope of this book, but any of the major magazines (*Sky & Telescope, Astronomy*, or *Astronomy Now*) will quickly lead you to all the other sources of information.

The publishers' addresses are in Appendix F, along with addresses of useful astronomy sites on the World Wide Web.

Useful books for beginners include Patrick Moore's *The Amateur Astronomer* and Liller and Mayer's *Cambridge Astronomy Guide*; the latter emphasizes using a camera rather than a telescope, so its point of departure resembles Chapter 2 of this book. More advanced observers should not miss Martinez' two-volume *Observer's Guide* and Burnham's *Celestial Handbook*. As a handbook of astronomical science, including astrophysics, I particularly like *Fundamental Astronomy*, by Karttunen *et al.*, because it doesn't leave out the mathematics; you can skip the mathematical portions if you like, then go back reread them if you feel the need.

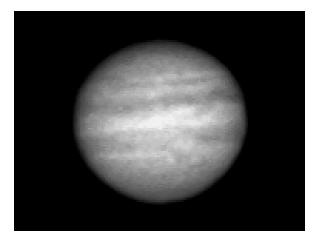


Figure 1.3 CCD image of Jupiter, taken with 20-cm (8-inch) f/10 Schmidt-Cassegrain telescope and $\times 2$ Barlow lens. Exposure 100 milliseconds with Meade Pictor 216XT camera. The image was processed by unsharp masking to bring out detail. (By the author)

1.3 Sharing your work with others

Once you have some good astronomical photographs, what do you do with them? You could join the legions of amateurs who send their pictures to major astronomy magazines. Unfortunately, your chances of getting a picture published that way are slim; none of mine ever have been! With hundreds of excellent pictures coming in every month, astronomy magazines can print only a few that are truly exceptional.

Instead, look for other ways to share your pictures with your friends and the public. Enter them in local photography contests. Assist the local newspaper with pictures of eclipses and comets. Give slide shows for school children and science clubs. Decorate your home and office with enlargements. Sell prints at art shows. Make Christmas cards. Do anything any other photographer would do, remembering that unlike most people's, your photographs probe the limits of the universe.

6 WELCOME TO ASTROPHOTOGRAPHY

Figure 1.4 An example of very advanced amateur work. The galaxy NGC 253; a 60-minute exposure on hypersensitized Kodak Technical Pan Film with a 14-inch f/7 telescope. (Chuck Vaughn)

Figure 1.5 A picture well worth sharing: the moon rising over Lick Observatory. Richard A. Milewski carefully calculated the position of moonrise to take this picture.

1.4 Maintaining balance and enjoyment

Let me end with an exhortation: remember that we do this because we enjoy it. Like most amateur astronomers, I am in the middle of a thriving career in something else (computational linguistics in my case) and have neither an unlimited budget nor a perfect observing site. But that's part of the challenge – to make intelligent and creative use of limited resources. Astrophotography is not a competitive sport, the beauty of a picture is not proportional to the difficulty of taking it, and your pictures don't have to be the best in the world in order to be satisfying. As G. K. Chesterton put it, "Anything worth doing is worth doing badly" – that is, worth doing even when you're not an expert.