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1

Introduction

This book introduces a calculus for analysing properties of concurrent com-
municating processes, which may grow and shrink and move about.

Building communicating systems is not a well-established science, or even
a stable craft; we do not have an agreed repertoire of constructions for building
and expressing interactive systems, in the way that we (more-or-less) have for
building sequential computer programs.

But nowadays most computing involves interaction – and therefore involves
systems with components which are concurrently active. Computer science
must therefore rise to the challenge of defining an underlying model, with a
small number of basic concepts, in terms of whichinteractionalbehaviour can
be rigorously described.

The same thing was done forcomputationalbehaviour a long time ago; logi-
cians came up with Turing machines, register machines (on which imperative
programming languages are built) and the lambda calculus (on which the no-
tion of parametric procedure is founded). None of these models is concerned
with interaction, as we would normally understand the term. Their basic ac-
tivity consists of reading or writing on a storage medium (tape or registers),
or invoking a procedure with actual parameters. Instead, we shall work with a
modelwhose basic action is to communicate across an interface with ahand-
shake, which means that the two participants synchronize this action.

Let us think about some simple examples of processes which do this hand-
shaking. They can be physical or virtual, hardware or software. As a very
physical system, consider a vending machine e.g. for selling drinks. It has
links with its environment: the slot for money, the drink-selection buttons, the
button for getting your change, the delivery point for a drink. The machine’s
pattern of interaction at these links is not entirely trivial – as we shall see in
Chapter 2.

Physical systems tend to have permanent physical links; they havefixed
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4 1 Introduction

structure. But most systems in the informatic world are not physical; their
links may be virtual or symbolic. An obvious modern example is the linkage
among agents on the internet or worldwide web. When you click on a sym-
bolic link on your screen, you induce a handshake between a local process
(your screen agent) and a remote process. These symbolic links can also be
created or destroyed on the fly, by you and others. Virtual links can also con-
sist of radio connection; consider the linkage between planes and the control
tower in an air-traffic control system. Systems like these, with transient links,
havemobilestructure. In Chapter 8 we shall look at a very simple example
involving mobile telephones.

We do not normally think of vending machines or mobile phones as doing
computation, but they share with modern distributed computing systems the
notion of interaction. This common notion underlies a theory of a huge range
of modern informatic systems, whether computational or not. This is the the-
ory we shall develop.

This book is not about design; for example, it will not teach you how best to
design a concurrent operating system. Instead, we shall try to isolateconcepts
which allow designers to think clearly, not only when analysing interactive
systems but even when expressing their designs in the first place. So we shall
proceed with the help of examples – notlarge systems, but small ones illus-
trating key notions and problems.

A central question we shall try to answer is: when do two interactive sys-
tems have equivalent behaviour, in the sense that we can unplug one and plug
in the other – in any environment – and not tell the difference? This is a the-
oretical question, but vitally important in practice. Until we know what con-
stitutes similarity or difference of behaviour, we cannot claim to know what
‘behaviour’ means– and if that is the case then we have no precise way of
explaining what our systems do!

Therefore our theory will focus on equivalence of behaviour. In fact we use
this notion as a means of specifying how a designed system should behave;
the designed system is held to be correct if its actual behaviour is equivalent to
the specified behaviour. Chapters 7 and 13 contain several examples of how
to prove such behavioural equivalence.

We shall begin at a familiar place, the classical theory of automata. We shall
then extend these automata to allow them to run concurrently and to interact –
which they will do by synchronizing their transitions from one state to another.
This allows us to consider each system component, whether elementary or
containing subcomponents, as an automaton.

For such systems of interacting automata we shall find it useful to represent
their interconnection by diagrams, such as the following:
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(1)

A

D C

B

Here, an arc between two component automataA andB of a system means
that theymay interact – that is,A andB may sometimes synchronize their
state transitions.

In many systems this linkage, or spatial structure, remains fixed as the sys-
tem’s behaviour unfolds. But in certain applications the spatial structure may
evolve; for example the componentD maydie (1→2):

(2)
A

C

B

or maydivide into two components (1→3):

D2

A

C

B

(3)

D1

This mode of evolution covers a large variety of behaviour. For example, in
understanding a high-level programming language one can treat each activa-
tion of a recursive procedure as a system component, whose lifetime lasts from
a call of the procedure to a return from it; this extends smoothly to the case
in which concurrent activations of the same procedure are allowed. Again, a
communication handler may under certain conditions create a ‘subagent’ to
deal with certain transactions; the subagent will carry out certain delegated
interactions, and die when its task is done.

A calculus called CCS (Calculus of Communicating Systems) was devel-
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oped along these lines in two books [9, 10] by the author. It was shown to rep-
resent not only interactive concurrent systems, such as communications pro-
tocols, but also much of what is familiar in traditional computation e.g. data
structures and storage regimes. In fact the calculus was used to give a rigorous
definition of a fairly powerful concurrent programming language. A similar
model known as CSP (Communicating Sequential Processes) is described by
Hoare [6]. These two models were independently conceived at roughly the
same time, around 1980.

Returning to modes of evolution, there is a further mode in which new links
arecreatedbetween existing components, e.g. betweenB andC (1→4):

(4)

A

D C

B

This mode of evolution may be calledmobility; since links can both die and be
created, one can model the movement of links between components. It is also
possible to model the movement of the components (automata) themselves.
For we may consider the location of a component of an interactive system to
be determined by the links which it possesses, i.e. which other components it
has as neighbours. If we think this way then movement, or change of location,
is represented by change of linkage; so in the example shown – where alsoA

andC have become disconnected – we can think ofC havingmovedfrom A

to B.
It can be argued that there are other forms of mobility; for example, a com-

puting agent may move in aphysicalspace, which is different from thevirtual
space represented by our links. We take this discussion up again in Chapter 8.
Mobility – of whatever kind – is important in modern computing. It was not
present in CCS or CSP, and we do not cover it here in Part I; but the theory we
develop here extends smoothly to theπ-calculus, introduced in Part II, which
takes mobility of linkage as a primitive notion.

Any conceptual model, particularly in a young subject, has a problem with
terminology. Ours is no exception; should we talk of automata, or processes,
or systems, or components, or agents? All five have been used in this intro-
duction. We shall mainly talk ofprocesses, and ofprocess expressionswhen
we discuss mathematical notation for processes. At the beginning of the book
we talk ofautomata, but only to relate our process theory to the pre-existing
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theory. When we discuss how processes combine to make larger processes
we talk of systemsof componentprocesses. For most of the book we shall
avoid using the wordagent, except when we are dealing with examples where
the word appears appropriate in a non-technical sense; but in Part II we shall
adopt a precise technical meaning for the word.




