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Il

Basic properties of the electromagnetic field

1.1 The electromagnetic field
1.1.1 Maxwell’s equations

THE state of excitation which is established in space by the presence of electric charges
is said to constitute an electromagnetic field. It is represented by two vectors, E and B,
called the electric vector and the magnetic induction respectively.™

To describe the effect of the field on material objects, it is necessary to introduce a
second set of vectors, viz. the electric current density j, the electric displacement D,
and the magnetic vector H.

The space and time derivatives of the five vectors are related by Maxwells
equations, which hold at every point in whose neighbourhood the physical properties
of the medium are continuous:

1. 4

curl H — - D = -5, (1)
C C
1.

curlE+-B =0, 2)
C

the dot denoting differentiation with respect to time.

* In elementary considerations E and H are, for historical reasons, usually regarded as the basic field vectors,
and D and B as describing the influence of matter. In general theory, however, the present interpretation is
compulsory for reasons connected with the electrodynamics of moving media.

The four Maxwell equations (1)—(4) can be divided into two sets of equations, one consisting of two

homogeneous equations (right-hand side zero), containing E and B, the other of two nonhomogeneous
equations (right-hand side different from zero), containing D and H. If a coordinate transformation of
space and time (relativistic Lorentz transformation) is carried out, the equations of each group transform
together, the equations remaining unaltered in form if j/c and p are transformed as a four-vector, and each
of the pairs E, B and D, H as a six-vector (antisymmetric tensor of the second order). Since the
nonhomogeneous set contains charges and currents (which represent the influence of matter), one has to
attribute the corresponding pair (D, H) to the influence of matter. It is, however, customary to refer to H
and not to B as the magnetic field vector; we shall conform to this terminology when there is no risk of
confusion.
The so-called Gaussian system of units is used here, i.e. the electrical quantities (E, D, j and p) are
measured in electrostatic units, and the magnetic quantities (H and B) in electromagnetic units. The
constant ¢ in (1) and (2) relates the unit of charge in the two systems; it is the velocity of light in the
vacuum and is approximately equal to 3 X 10'° cm/s. (A more accurate value is given in §1.2.)

—r



2 I Basic properties of the electromagnetic field

They are supplemented by two scalar relations:
divD = 4amp, 3)
divB = 0. “

Eq. (3) may be regarded as a defining equation for the electric charge density p and (4)
may be said to imply that no free magnetic poles exist.
From (1) it follows (since div curl = 0) that

1 .
divj = - divD,
or, using (3),
% +divj = 0. (5)

By analogy with a similar relation encountered in hydrodynamics, (5) is called the
equation of continuity. It expresses the fact that the charge is conserved in the
neighbourhood of any point. For if one integrates (5) over any region of space, one
obtains, with the help of Gauss’ theorem,

d
—deV—FJj-ndS:O, (6)
dt

the second integral being taken over the surface bounding the region and the first
throughout the volume, n denoting the unit outward normal. This equation implies that
the total charge

e= deV (7

contained within the domain can only increase on account of the flow of electric
current

Jzﬁmw. (8)

If all the field quantities are independent of time, and if, moreover, there are no
currents (j = 0), the field is said to be static. If all the field quantities are time
independent, but currents are present (j # 0), one speaks of a stationary field. In
optical fields the field vectors are very rapidly varying functions of time, but the
sources of the field are usually such that, when averages over any macroscopic time
interval are considered rather than the instantaneous values, the properties of the field
are found to be independent of the instant of time at which the average is taken. The
word stationary is often used in a wider sense to describe a field of this type. An
example is a field constituted by the steady flux of radiation (say from a distant star)
through an optical system.

1.1.2 Material equations

The Maxwell equations (1)—(4) connect the five basic quantities E, H, B, D and j. To
allow a unique determination of the field vectors from a given distribution of currents



1.1 The electromagnetic field 3

and charges, these equations must be supplemented by relations which describe the
behaviour of substances under the influence of the field. These relations are known as
material equations™ (or constitutive relations). In general they are rather complicated,;
but if the field is time-harmonic (see §1.4.3), and if the bodies are at rest, or in very
slow motion relative to each other, and if the material is isotropic (i.e. when its
physical properties at each point are independent of direction), they take usually the
relatively simple formf

j=0E, )
D = ¢E, (10)
B = uH. (11)

Here o is called the specific conductivity, € is known as the dielectric constant (or
permittivity) and u is called the magnetic permeability.

Eq. (9) is the differential form of Ohm’s law. Substances for which ¢ # 0 (or more
precisely is not negligibly small; the precise meaning of this cannot, however, be
discussed here) are called conductors. Metals are very good conductors, but there are
other classes of good conducting materials such as ionic solutions in liquids and also
in solids. In metals the conductivity decreases with increasing temperature. However,
in other classes of materials, known as semiconductors (e.g. germanium), conductivity
increases with temperature over a wide range.

Substances for which o is negligibly small are called insulators or dielectrics. Their
electric and magnetic properties are then completely determined by ¢ and u. For most
substances the magnetic permeability u is practically unity. If this is not the case, i.e.
if u differs appreciably from unity, we say that the substance is magnetic. In particular,
if u>1, the substance is said to be paramagnetic (e.g. platinum, oxygen, nitrogen
dioxide), while if 4 <1 it is said to be diamagnetic (e.g. bismuth, copper, hydrogen,
water).

If the fields are exceptionally strong, such as are obtained, for example, by focusing
light that is generated by a laser, the right-hand sides of the material equations may
have to be supplemented by terms involving components of the field vectors in powers
higher than the first.]

In many cases the quantities o, € and u will be independent of the field strengths; in
other cases, however, the behaviour of the material cannot be described in such a
simple way. Thus, for example, in a gas of free ions the current, which is determined

There is an alternative way of describing the behaviour of matter. Instead of the quantities ¢ = D/E,
u = B/ H one considers the differences D — E and B — H; these have a simpler physical significance and
will be discussed in Chapter II.
The more general relations, applicable also to moving bodies, are studied in the theory of relativity. We
shall only need the following result from the more general theory: that in the case of moving charges there
is, in addition to the conduction current oE, a convection current pv, where v is the velocity of the moving
charges and p the charge density (cf. p. 9).
1 Nonlinear relationship between the displacement vector D and the electric field E was first demonstrated
in this way by P. A. Franken, A. E. Hill, C. W. Peters and G. Weinrich, Phys. Rev. Lett., 7 (1961), 118.

For systematic treatments of nonlinear effects see N. Bloembergen, Nonlinear Optics (New York, W. A.
Benjamin, Inc., 1965), P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge,
Cambridge University Press, 1990) or R. W. Boyd, Nonlinear Optics (Boston, Academic Press, 1992).

—
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by the mean speed of the ions, depends, at any moment, not on the instantaneous value
of E, but on all its previous values. Again, in so-called ferromagnetic substances
(substances which are very highly magnetic, e.g. iron, cobalt and nickel) the value of
the magnetic induction B is determined by the past history of the field H rather than by
its instantaneous value. The substance is then said to exhibit hysteresis. A similar
history-dependence will be found for the electric displacement in certain dielectric
materials. Fortunately hysteretic effects are rarely significant for the high-frequency
field encountered in optics.

In the main part of this book we shall study the propagation in substances which
light can penetrate without appreciable weakening (e.g. air, glass). Such substances are
said to be transparent and must be electrical nonconductors (o = 0), since conduction
implies the evolution of Joule heat (see §1.1.4) and therefore loss of electromagnetic
energy. Optical properties of conducting media will be discussed in Chapter XIV.

1.1.3 Boundary conditions at a surface of discontinuity

Maxwell’s equations were only stated for regions of space throughout which the
physical properties of the medium (characterized by € and u) are continuous. In optics
one often deals with situations in which the properties change abruptly across one or
more surfaces. The vectors E, H, B and D may then be expected also to become
discontinuous, while p and j will degenerate into corresponding surface quantities. We
shall derive relations describing the transition across such a discontinuity surface.

Let us replace the sharp discontinuity surface 7 by a thin transition layer within
which € and y vary rapidly but continuously from their values near 7 on one side to
their value near T on the other. Within this layer we construct a small near-cylinder,
bounded by a stockade of normals to T; roofed and floored by small areas d4; and
0A; on each side of 7, at constant distance from it, measured along their common
normal (Fig. 1.1). Since B and its derivatives may be assumed to be continuous
throughout this cylinder, we may apply Gauss’ theorem to the integral of div B taken
throughout the volume of the cylinder and obtain, from (4),

JdideV:JB-ndS:O; (12)

the second integral is taken over the surface of the cylinder, and n is the unit outward
normal.

Since the areas 04, and 04, are assumed to be small, B may be considered to have
constants values B! and B® on 64, and 045, and (12) may then be replaced by

1M

Fig. 1.1 Derivation of boundary conditions for the normal components of B and D.
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B . n;04, + B? - n,04, + contribution from walls = 0. (13)

If the height &/ of the cylinder decreases towards zero, the transition layer shrinks into
the surface and the contribution from the walls of the cylinder tends to zero, provided
that there is no surface flux of magnetic induction. Such flux never occurs, and
consequently in the limit,

BY . n; +B? - ny)04 =0, (14)

04 being the area in which the cylinder intersects 7. If ny, is the unit normal pointing
from the first into the second medium, then n; = —ny,, n; = ny; and (14) gives

n; - (B? —BY) =0, (15)

i.e. the normal component of the magnetic induction is continuous across the surface
of discontinuity.

The electric displacement D may be treated in a similar way, but there will be an
additional term if charges are present. In place of (12) we now have from (3)

JdideV: JD-ndS:4JerdV. (16)

As the areas 04 and 04, shrink together, the total charge remains finite, so that the
volume density becomes infinite. Instead of the volume charge density p the concept
of surface charge density p must then be used. It is defined by™

61h1r£10deV: deA. a7

We shall also need later the concept of surface current density j, defined in a similar
way:

lim |jdV = |jd4. 18
o o
If the area 04 and the height 6/ are taken sufficiently small, (16) gives

DY . n; 64, +DP - n, 54, + contribution from walls = 47p 4.

The contribution from the walls tends to zero with 04, and we therefore obtain in the
limit as 4 — 0,

ng; - (D — DY) = 4xp, (19)

i.e. in the presence of a layer of surface charge density p on the surface, the normal
component of the electric displacement changes abruptly across the surface, by an
amount equal to 47p.

* Tor later purposes we note a representation of the surface charge density and the surface current density in
terms of the Dirac delta function (see Appendix IV). If the equation of the surface of discontinuity is
F(x, y, z) = 0, then

p = plgrad F|0(F), (17a)
j = lgrad F|o(F). (18a)

These relations can immediately be verified by substituting from (17a) and (18a) into (17) and (18) and
using the relation dF = |grad F|d/ and the sifting property of the delta function.
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Next, we examine the behaviour of the tangential components. Let us replace the
sharp discontinuity surface by a continuous transition layer. We also replace the
cylinder of Fig. 1.1 by a ‘rectangular’ area with sides parallel and perpendicular to T
(Fig. 1.2).

Let b be the unit vector perpendicular to the plane of the rectangle. Then it follows
from (2) and from Stokes’ theorem that

1 (.
qurlE-de:JE-dr:—fJB-de, (20)
C

the first and third integrals being taken throughout the area of the rectangle, and the
second along its boundary. If the lengths P; Q) (= ds1), and P,Q, (= Js5) are small, E
may be replaced by constant values E!) and E® along each of these segments.
Similarly B may be replaced by a constant value. Eq. (20) then gives

1.
EY -t 051 + E@ - t, ds, + contribution from ends = ——B - b dsoh, (21
c

where Js is the line element in which the rectangle intersects the surface. If now the
height of the rectangle is gradually decreased, the contribution from the ends P; P, and
010, will tend to zero, provided that E does not in the limit acquire sufficiently sharp
singularities; this possibility will be excluded. Assuming also that B remains finite, we
obtain in the limit as 64 — 0,

ED . t; + E? . t))05 = 0. (22)

If t is the unit tangent along the surface, then (see Fig. 1.2) t; = —t = —b X npy,
t, =t =b X npp, and (22) gives

b:[n; X (E®@ -—ED)]=0.

Since the orientation of the rectangle and consequently that of the unit vector b is
arbitrary, it follows that

n;, X (E® —EW) =0, (23)

i.e. the tangential component of the electric vector is continuous across the surface.

Finally consider the behaviour of the tangential component of the magnetic vector.
The analysis is similar, but there is an additional term if currents are present. In place
of (21) we now have

W
W

oY
oy

Fig. 1.2 Derivation of boundary conditions for the tangential components of E and H.
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1. 4 .
HY - t; 051 + H? « t, ds, + contribution from ends = —-D-bdsdh + jj -bJs.
c c

(24)
On proceeding to the limit /4 — 0 as before, we obtain
477,
np X (H® —HO) = ” (25)
C

From (25) is follows that in the presence of a surface current of density j the
tangential component (considered as a vector quantity) of the magnetic vector changes
abruptly, its discontinuity being (47/ c)j X npp.

Apart from discontinuities due to the abrupt changes in the physical properties of
the medium, the field vectors may also be discontinuous because of the presence of a
source which begins to radiate at a particular instant of time ¢# = fy. The disturbance
then spreads into the surrounding space, and at any later instant ¢#; > ¢y, will have filled
a well-defined region. Across the (moving) boundary of this region, the field vectors
will change abruptly from finite values on the boundary to the value zero outside it.

The various cases of discontinuity may be covered by rewriting Maxwell’s equations
in an integral form.* The general discontinuity conditions may also be written in the
form of simple difference equations; a derivation of these equations is given in
Appendix VI

1.1.4 The energy law of the electromagnetic field

Electromagnetic theory interprets the light intensity as the energy flux of the field. It is
therefore necessary to recall the energy law of Maxwell’s theory.
From (1) and (2) it follows that

4 o1
E-culH-H-culE=_""j.E+-E-D+-H-B. (26)
C C C

Also, by a well-known vector identity, the term on the left may be expressed as the
divergence of the vector product of H and E:

E-curlH—-H:curlE = —div(E X H). 27)
From (26) and (27) we have that
1 . . 4, .
—(E-D+H:B)+—j-E+div(E XH)=0. (28)
c c

When we multiply this equation by ¢/4, integrate throughout an arbitrary volume and
apply Gauss’s theorem, this gives

1 . .
EJ(E-DvLH-B)dV—l—J CEdV 4 J(EXH) nds =0, (29)

where the last integral is taken over the boundary of the volume, n being the unit
outward normal.
The relation (29) is a direct consequence of Maxwell’s equations and is therefore

* See, for example, A. Sommerfeld, Electrodynamics (New York, Academic Press, 1952), p. 11; or J. A.
Stratton, Electromagnetic Theory (New York, McGraw-Hill, 1941), p. 6.



8 I Basic properties of the electromagnetic field

valid whether or not the material equations (9)—(11) hold. It represents, as will be
seen, the energy law of an electromagnetic field. We shall discuss it here only for the
case where the material equations (9)—(11) are satisfied. Generalizations to anisotropic
media, where the material equations are of a more complicated form, will be consid-
ered later (Chapter XV).

We have, on using the material equations,

1 . 1 B 0 ’
Z_[(E'D)*4 ( E) = 87@ ¢E7) = 87 at(E D),
1 1 0 1 (30)
PR . » 2
B = (” )= 8 5 W) =g 8t(H B).
Setting
—LE D —LH B 3D
We - 8.7'[ ) Wm - 8.7[ ’
and
= [+ ey (32)
(29) becomes,
ddV;/—i-J EdV+ J(EXH) ndS = 0. (33)

We shall show that W represents the total energy contained within the volume, so that
w, may be identified with the electric energy density and w,, with the magnetic energy
density of the field.*

To justify the interpretation of W as the total energy we have to show that, for a
closed system (i.e. one in which the field on the boundary surface may be neglected),
the change in W as defined above is due to the work done by the field on the material
charged bodies which are embedded in it. It suffices to do this for slow motion of the
material bodies, which themselves may be assumed to be so small that they can be
regarded as point charges e; (kK =1, 2, ...). Let the velocity of the charge e; be v
([vi| < ©).

The force exerted by a field (E, B) on a charge e moving with velocity v is given by
the so-called Lorentz law,

F—e<E+leB>, (34)
C

which is based on experience. It follows that if all the charges e, are displaced by ox;
(k=1,2,...)in time ¢, the total work done is

* In the general case the densities are defined by the expressions

1 1
- E . D m = H . B
3 J dD, w, 2 j d

When the relationship between E and D and between H and B is linear, as here assumed, these expressions
reduce to (31).

We =
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(3A—ZFk-5xk—Zek(Ek —|—lvk><B) - OXy
k k

= ZekEk'éxk = ZekEk'Vkét,
k k

since O0x; = v, Ot. If the number of charged particles is large, we can consider the
distribution to be continuous. We introduce the charge density p (i.e. total charge per
unit volume) and the last equation becomes

04 = 5{Jpv-EdV, 35)

the integration being carried throughout an arbitrary volume. Now the velocity v does
not appear explicitly in Maxwell’s equations, but it may be introduced by using an
experimental result found by Rontgen*, according to which a convection current (i.e. a
set of moving charges) has the same electromagnetic effect as a conduction current in
a wire. Hence the current density j appearing in Maxwell’s equations can be split into
two parts

i =lc tio (36)
where

oE

i
is the conduction current density, and
jo=pv

represents the convection current density. (35) may therefore be written as

04 = 6tJjU-EdV. (37)
Let us now define a vector S and a scalar Q by the relations
c
=—(EXH
S = —(EXH), (38)
0= l|j.-EdV = JOEZ dv. (39)

Then by (35) and (36)

Jj-EdV:Q+JjU-EdV

04
=0+ (40)

where the second function is not, of course, a total derivative of a space-time function.
Eq. (33) now takes the form

* W. C. Réntgen, Ann. d. Physik, 35 (1888), 264; 40 (1890), 93.
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dw 04

—=——-—0—|S-ndS. 41

dr ot 0 J n “1)
For a nonconductor (0 = 0) we have that O = 0. Assume also that the boundary

surface is so far away that we can neglect the field on it, due to the electromagnetic

processes inside; then [ S-ndS = 0, and integration of (41) gives

W + A = constant. (42)

Hence, for an isolated system, the increase of /¥ per unit time is due to the work done
on the system during this time. This result justifies our definition of electromagnetic
energy by means of (32).

The term Q represents the resistive dissipation of energy (called Joule's heat) in a
conductor (o # 0). According to (41) there is a further decrease in energy if the field
extends to the boundary surface. The surface integral must therefore represent the flow
of energy across this boundary surface. The vector S is known as the Poynting vector
and represents the amount of energy which crosses per second a unit area normal to
the directions of E and H.

It should be noted that the interpretation of S as energy flow (more precisely as the
density of the flow) is an abstraction which introduces a certain degree of arbitrariness.
For the quantity which is physically significant is, according to (41), not S itself, but
the integral of S - n taken over a closed surface. Clearly, from the value of the integral,
no unambiguous conclusion can be drawn about the detailed distribution of S, and
alternative definitions of the energy flux density are therefore possible. One can always
add to S the curl of an arbitrary vector, since such a term will not contribute to the
surface integral as can be seen from Gauss’ theorem and the identity div curl = 0.*
However, when the definition has been applied cautiously, in particular for averages
over small but finite regions of space or time, no contradictions with experiments have
been found. We shall therefore accept the above definition in terms of the Poynting
vector of the density of the energy flow.

Finally we note that in a nonconducting medium (o = 0) where no mechanical work
is done (A4 = 0), the energy law may be written in the form of a hydrodynamical
continuity equation for noncompressible fluids:

ow

ot

A description of propagation of light in terms of a hydrodynamical model is often
helpful, particularly in the domain of geometrical optics and in connection with scalar
diffraction fields, as it gives a picture of the energy transport in a simple and graphic
manner. In optics, the (averaged) Poynting vector is the chief quantity of interest. The
magnitude of the Poynting vector is a measure of the light intensity, and its direction
represents the direction of propagation of the light.

+divS =0, (W = we + wy). (43)

* According to modern theories of fields the arbitrariness is even greater, allowing for alternative expressions
for both the energy density and the energy flux, but consistent with the change of the Lagrangian density
of the field by the addition of a four-divergence. For a discussion of this subject see, for example, G.
Wentzel, Quantum Theory of Fields (New York, Interscience Publishers, 1949), especially §2 or J. D.
Jackson, Classical Electrodynamics (New York, J. Wiley and Sons, 2nd ed. 1975), Sec. 12.10, especially p.
602.
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1.2 The wave equation and the velocity of light

Maxwell’s equations relate the field vectors by means of simultaneous differential
equations. On elimination we obtain differential equations which each of the vectors
must separately satisfy. We shall confine our attention to that part of the field which
contains no charges or currents, i.e. where j = 0 and p = 0.

We substitute for B from the material equation §1.1 (11) into the second Maxwell
equation §1.1 (2), divide both sides by u and apply the operator curl. This gives

1 1 .
curl < curl E> +—curlH=0. (1)
u c

Next we differentiate the first Maxwell equation §1.1 (1) with respect to time, use the
material equation §1.1 (10) for D, and eliminate curl H between the resulting equation
and (1); this gives

1 ..
curl < curl E> +Zi=o. )
u c

If we use the identities curl uv = u curl v + (grad u) X v and curl curl = grad div — V2,
(2) becomes

V2E — %‘E + (gradIn ) X curl E — grad divE = 0. 3)

Also from §1.1 (3), using again the material equation for D and applying the identity
divuv = udivv 4 v - grad u we find

edivE+ E-grade = 0. 4)
Hence (3) may be written in the form
2 U - N
V°E — ?E + (gradIn u) X curl E 4 grad (E - gradIn€) = 0. (5)
In a similar way we obtain an equation for H alone:
V’H — Ec—!;H + (gradInég) X curl H + grad (H - grad In u) = 0. (6)

In particular, if the medium is homogeneous, gradloge = gradlnu = 0, and (5) and
(6) reduce to

vE-Li-0, vH-ZLi-o0 (7)
c c

These are standard equations of wave motion and suggest the existence of electro-
magnetic waves propagated with a velocity™

v=c/\/Eu. ¥

* The concept of a velocity of an electromagnetic wave has actually an unambiguous meaning only in
connection with waves of very simple kind, e.g. plane waves. That v does not represent the velocity of
propagation of an arbitrary solution of (7) is obvious if we bear in mind that these equations also admit
standing waves as solutions.

In this introductory section it is assumed that the reader is familiar with the concept of a plane wave,
and we regard v as the velocity with which such a wave advances. The mathematical representation of a
plane wave will be discussed in §1.3 and §1.4.
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The constant ¢ was first determined by R. Kohlrausch and W. Weber in 1856 from
the ratio of the values of the capacity of a condenser measured in electrostatic and
electromagnetic units, and it was found to be identical with the velocity of light in free
space. Using this result, Maxwell developed his electromagnetic theory of light,
predicting the existence of electromagnetic waves; the correctness of this prediction
was confirmed by the celebrated experiments of H. Hertz (see Historical introduction).

As in all wave theories of light, the elementary process which produces the optical
impression is regarded as being a harmonic wave in space-time (studied in its simplest
form in §1.3 and §1.4). If its frequency is in the range from 4 X 10'*s7! to
7.5 X 10 57! (approximately) it gives rise to the psychological impression of a
definite colour. (The opposite, however, is not true: coloured light of a certain
subjective quality may be a composition of harmonic waves of very different
frequency distributions.) The actual connection between colour and frequency is very
involved and will not be studied in this book.*

The first determination of the velocity of lightt was made by Rémer in 1675 from
observations of the eclipses of the first satellite of Jupiter and later in a different way
(from aberration of fixed stars) by Bradley (1728).

The first measurements of the velocity of light from terrestrial sources were carried
out by Fizeau in 1849. It is necessary to employ a modulator, which marks off a
portion of the beami and for this purpose Fizeau used a rotation wheel. Later methods
employed rotating mirrors or electronic shutters. The rotating mirror method was
suggested by Wheatstone in 1834 and was used by Foucault in 1860. It was later
systematically developed over a period of many years by Michelson. The average
value based on about 200 measurements by Michelson gave ¢ as 299,796 km/s. An
optical shutter method employing a Kerr cell was developed by Karolus and Mittel-
staedt (1928), Anderson (1937) and Hiittel (1940). The values of ¢ obtained from these
measurements are in excellent agreement with those based on indirect methods, such
as determinations from the ratio of an electric charge measured in electrostatic and
electromagnetic units; for example Rosa and Dorsey (1907) in this way found c as
299,784 km/s. Measurements of the velocity of electromagnetic waves on wires
carried out by Mercier (1923) gave the value of ¢ equal to 299,782 km/s. The value
adopted by the Fifteenth General Conference of Weights and Measures§ is

¢ = 299,792.458 km/s. )

The close agreement between the values of ¢ obtained from measurements of very
different kinds (and in some cases using radiation whose frequencies differ by a factor
of hundreds of thousands from those used in the optical measurements) gives a striking
confirmation of Maxwell’s theory.

The dielectric constant ¢ is usually greater than unity, and u is practically equal to

* The sensitivity of the human eye to different colours is, however, briefly discussed in §4.8.1.

1 For a description of the methods used for determination of the velocity of light, see for example, E.
Bergstrand, Encyclopedia of Physics, ed. S. Fliigge, Vol. 24 (Berlin, Springer, 1956), p. 1.

Detailed analysis of the results obtained by different methods is also given by R. T. Birge in Rep. Progr.

Phys. (London, The Physical Society), 8 (1941), 90.

1 Such determinations give essentially the group velocity (see §1.3.4). The difference between the group
velocity and the phase velocity in air at standard temperature and pressure is about 1 part in 50,000.

§ Conférence Générale des Poids et Mesures, XV, Paris, 1975, Comptes Rendus des Séances (Paris, Bureau
International des Poids et Mesures, 1976).
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unity for transparent substances, so that the velocity v is then according to (8) smaller
than the vacuum velocity c. This conclusion was first demonstrated experimentally for
propagation of light in water in 1850 by Foucault and Fizeau.

The value of v is not as a rule determined directly, but only relative to ¢, with the
help of the law of refraction. According to this law, if a plane electromagnetic wave
falls on to a plane boundary between two homogeneous media, the sine of the angle 6,
between the normal to the incident wave and the normal to the surface bears a constant
ratio to the sine of the angle 6, between the normal of the refracted wave and the
surface normal (Fig. 1.3), this constant ratio being equal to the ratio of the velocities
v; and v, of propagation in the two media:

sin 91 U1

sin@z o 1)2. (10)
This result will be derived in §1.5. Here we only note that it is equivalent to the
assumption that the wave-front, though it has a kink at the boundary, is continuous, so
that the line of intersection between the incident wave and the boundary travels at the
same speed (v’, say) as the line of intersection between the refracted wave and the
boundary. We then have

U = v’ sin 91, Uy = v’ sin 62, (11)

from which, on elimination of v’, (10) follows. This argument, in a slightly more
elaborate form, is often given as an illustration of Huygens’ construction (§3.3).

The value of the constant ratio in (10) is usually denoted by 7, and is called the
refractive index, for refraction from the first into the second medium. We also define
an ‘absolute refractive index’ n of a medium,; it is the refractive index for refraction
from vacuum into that medium,

n—=

c
bl 12
: (12)
If n; and n;, are the absolute refractive indices of two media, the (relative) refractive
index ny, for refraction from the first into the second medium then is

ny U

ny U
/
4
Refracted beay
wave-front 0,/
Uy, 0y
v, N
Incident
wave-front

Fig. 1.3 lustrating the refraction of a plane wave.
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Table 1.1. Refractive indices and static dielectric constants of
certain gases

n (yellow light) Ve
Air 1.000294 1.000295
Hydrogen H, 1.000138 1.000132
Carbon dioxide CO, 1.000449 1.000473
Carbon monoxide CO 1.000340 1.000345

Table 1.2. Refractive indices and static dielectric constants of
certain liquids

n (yellow light) Ve
Methyl alcohol CH;0H 1.34 5.7
Ethyl alcohol C,HsOH 1.36 5.0
Water H,O 1.33 9.0

Comparison of (12) and (8) gives Maxwell’s formula:

n=./eu. (14)

Since for all substances with which we shall be concerned, u is effectively unity
(nonmagnetic substances), the refractive index should then be equal to the square root
of the dielectric constant, which has been assumed to be a constant of the material. On
the other hand, well-known experiments on prismatic colours, first carried out by
Newton, show that the index of refraction depends on the colour, i.e. on the frequency
of the light. If we are to retain Maxwell’s formula, it must be supposed that ¢ is not a
constant characteristic of the material, but is a function of the frequency of the field.
The dependence of ¢ on frequency can only be treated by taking into account the
atomic structure of matter, and will be briefly discussed in §2.3.

Maxwell’s formula (with & equal to the static dielectric constant) gives a good
approximation for such substances as gases with a simple chemical structure which do not
disperse light substantially, i.e. for those whose optical properties do not strongly depend
on the colour of the light. Results of some early measurements for such gases, carried out
by L. Boltzmann,* are given in Table 1.1. Eq. (14) also gives a good approximation for
liquid hydrocarbons; for example benzene CgHg has n = 1.482 for yellow light whilst
V& = 1.489. On the other hand, there is a strong deviation from the formula for many
solid bodies (e.g. glasses), and for some liquids, as illustrated in Table 1.2.

1.3 Scalar waves

In a homogeneous medium in regions free of currents and charges, each rectangular
component V(r, ¢) of the field vectors satisfies, according to §1.2 (7), the homogeneous
wave equation

* L. Boltzmann, Wien. Ber., 69 (1874), 795, Pogg. Ann., 155 (1875), 403; Wiss. Abh. Physik-techn.
Reichsanst., 1, Nr. 26, 537.
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iaz 14
v? 012

We shall now briefly examine the simplest solution of this equation.

viy =0. (1)

1.3.1 Plane waves

Let r(x, y, z) be a position vector of a point P in space and s(s, Sy, ;) a unit vector in
a fixed direction. Any solution of (1) of the form

V="V(-s,1) (2)
is said to represent a plane wave, since at each instant of time V' is constant over each
of the planes

I - § = constant

which are perpendicular to the unit vector s.
It will be convenient to choose a new set of Cartesian axes O, O, O¢ with O¢ in
the direction of s. Then (see Fig. 1.4)

r-s=_¢, 3)
and one has

o_ o0 o_ o 0 0
ox oL’ oy ot 0z Co¢

From these relations one easily finds that

RV

V2V = —— 4
5 0
so that (1) becomes
v 1%V
o woe ©)
If we set
E—vt=p, E+vr=gq, (6)

Fig. 1.4 Propagation of a plane wave.
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(5) takes the form

8a;gq =0 @
The general solution of this equation is
V="Vip)+Vaq)
=Vi(r-s—vt)+ Vo(r-s+vi), (8)

where V; and V; are arbitrary functions.

We see that the argument of V| is unchanged when (g, ¢) is replaced by (§ + vr,
t + 1), where t is arbitrary. Hence V' represents a disturbance which is propagated
with velocity v in the positive ¢ direction. Similarly V(& + v¢) represents a distur-
bance which is propagated with velocity v in the negative ¢ direction.

1.3.2 Spherical waves
Next we consider solutions representing spherical waves, i.e. solutions of the form
V="V(,1), O]

where r = |r| = \/x? + »? + 22
Using the relations 9/0x = (9r/0x)(0/0r) = (x/r)(0/Ir), etc., one finds after a
straightforward calculation that

1 02
VZV:;ﬁ(rV), (10)

so that the wave equation (1) now becomes

o 1 0?

52 = 55507 =0. (11)

Now this equation is identical with (5), if { is replaced in the latter by » and V by rV

Hence the solution of (11) can immediately be written down from (8):

o Vi(r — vt) n Va(r + vt)
r r ’

4 (12)

V1 and V; being again arbitrary functions. The first term on the right-hand side of (12)
represents a spherical wave diverging from the origin, the second a spherical wave
converging towards the origin, the velocity of propagation being v in both cases.

1.3.3 Harmonic waves. The phase velocity
At a point ry in space the wave disturbance is a function of time only:
V(rg, 1) = F(1). (13)

As will be evident from our earlier remarks about colour, the case when F'is periodic
is of particular interest. Accordingly we consider the case when F has the form

F(t) = acos(wt + 90). (14)
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Here a (> 0) is called the amplitude, and the argument wt + 6 of the cosine term is
called the phase. The quantity

w 1
V=oo=T (15)
is called the frequency and represents the number of vibrations per second. w is called
the angular frequency and gives the number of vibrations in 27 seconds. Since F'
remains unchanged when ¢ is replaced by ¢+ 7, T is the period of the vibrations.
Wave functions (i.e. solutions of the wave equation) of the form (14) are said to be
harmonic with respect to time.

Let us first consider a wave function which represents a harmonic plane wave
propagated in the direction specified by a unit vector s. According to §1.3.1 it is
obtained on replacing ¢ by # — r - s/v in (14):

V(r, t) = acos {w(r—?) +6]. (16)
Eq. (16) remains unchanged when r - s is replaced by r - s + A, where
2
A=v—=vT. 17
- a7)

The length A is called the wavelength. It is also useful to define a reduced wavelength
Ao as

Ao = cT = nk; (18)

this is the wavelength which corresponds to a harmonic wave of the same frequency
propagated in vacuo. In spectroscopy one uses also the concept of a wave number™ «,
which is defined as the number of wavelengths in vacuo, per unit of length (cm):

1 v
K=—=-—. 19
o o (19)
It is also convenient to define vectors k¢ and k in the direction s of propagation,
whose lengths are respectively
2 o
ko =2k === —, (20)
/10 C
and
2 nw o
k=nkp=—=—=—. 21
0=ETET 21
The vector k = ks is called the wave vector or the propagation vector in the medium,
ko = kos being the corresponding vector in the vacuum.
Instead of the constant 0 one also uses the concept of path length I, which is the
distance through which a wave-front recedes when the phase increases by 0:
1% A B A.()

I= 0= 520 = 5,0 22

* We shall refer to « as the ‘spectroscopic wave number’ and reserve the term ‘wave number’ for ko or £,
defined by (20) and (21), as customary in optics.



18 1 Basic properties of the electromagnetic field

Let us now consider time-harmonic waves of more complicated form. A general
time-harmonic, real, scalar wave of frequency w may be defined as a real solution of
the wave equation, of the form

V(r, t) = a(r)cos[wr — g(r)], (23)
a (> 0) and g being real scalar functions of positions. The surfaces
g(r) = constant (24)

are called cophasal surfaces or wave surfaces. In contrast with the previous case, the
surfaces of constant amplitude of the wave (23) do not, in general, coincide with the
surfaces of constant phase. Such a wave is said to be inhomogeneous.

Calculations with harmonic waves are simplified by the use of exponential instead
of trigonometric functions. Eq. (23) may be written as

V(r, f) = R{U(r)e '}, (25)
where
U(r) = a(r)e's™, (26)

and R denotes the real part. On substitution from (26) into the wave equation (1), one
finds that U must satisfy the equation

V2U + n*ko’U = 0. (27)

U is called the complex amplitude™ of the wave. In particular, for a plane wave one has
g(l’):(U(rl;s)—(3—k(r-s)—(5—k-r—(§. (28)

If the operations on V are linear, one may drop the symbol R in (25) and operate
directly with the complex function, the real part of the final expression being then
understood to represent the physical quantity in question. However, when dealing with
expressions which involve nonlinear operations such as squaring, etc. (e.g. in calcula-
tions of the electric or magnetic energy densities), one must in general take the real
parts first and operate with these alone.7

Unlike a plane harmonic wave, the more general wave (25) is not periodic with
respect to space. The phase wt — g(r) is, however, seen to be the same for (r, 7) and
(r + dr, t + df), provided that

wdt — (grad g) - dr = 0. (29)
If we denote by q the unit vector in the direction of dr, and write dr = q ds, then (29)
gives
ds )
27 30
dt q-gradg (30)

This expression will be numerically smallest when q is the normal to the cophasal
surface, i.e. when q = grad g/|grad g|, the value then being

* In the case of a plane wave, one often separates the constant factor ¢~® and implies by complex amplitude
only the variable part ae'*”.
+ This is not necessary when only a time average of a quadratic expression is required [see §1.4, (54)—(56)].
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o p)(r) —

)
—_— (31)
|grad g|

v'P)(r) is called the phase velocity and is the speed with which each of the cophasal
surfaces advances. For a plane electromagnetic wave one has from (28) that
grad g = k, and therefore

') — @ — _c
k Jeu’
because of (21). For waves of more complicated form, the phase velocity v'” will in
general differ from c¢/,/gu and will vary from point to point even in a homogeneous
medium. However, it will be seen later (§3.1.2) that, when the frequency is sufficiently
large, the phase velocity is approximately equal to c/,/eu, even for waves whose
cophasal surfaces are not plane.

It must be noted that the expression for ds/d¢ given by (30) is not the resolute of the
phase velocity in the q direction, i.e. the phase velocity does not behave as a vector.
On the other hand its reciprocal, i.e. the quantity

dr_q-grdg 52

ds )
is seen to be the component of the vector (grad g)/w in the q direction. The vector
(grad g)/w is sometimes called phase slowness.

The phase velocity may in certain cases be greater than c. For plane waves this will
be so when n = ,/eu is smaller than unity, as in the case of dispersing media in
regions of the so-called anomalous dispersion® (see §2.3.4). Now according to the
theory of relativity, signals can never travel faster than c. This implies that the phase
velocity cannot correspond to a velocity with which a signal is propagated. It is, in
fact, easy to see that the phase velocity cannot be determined experimentally and must
therefore be considered to be void of any direct physical significance. For in order to
measure this velocity, it would be necessary to affix a mark to the infinitely extended
smooth wave and to measure the velocity of the mark. This would, however, mean the
replacement of the infinite harmonic wave train by another function of space and time.

1.3.4 Wave packets. The group velocity

The monochromatic waves considered in the preceding section are idealizations never
strictly realized in practice. It follows from Fourier’s theorem that any wave V(r, t)
(provided it satisfies certain very general conditions) may be regarded as a super-
position of monochromatic waves of different frequencies:

[o.¢]

Vir, t) = Jo ag(r)cos[wt — g,(r)]dw. (33)

* The problem of propagation of electromagnetic signals in dispersive media has been investigated in classic
papers by A. Sommerfeld, Ann. d. Physik, 44 (1914), 177 and by L. Brillouin, ibid., 44 (1914), 203.
English translations of these papers are included in L. Brillouin, Wave Propagation and Group Velocity
(New York, Academic Press, 1960), pp. 17, 43. A systematic treatment of propagation of transient
electromagnetic fields through dielectric media which exhibit both dispersion and absorption is given in K.
E. Oughstun and G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics (Berlin and
New York, Springer, 1994).
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It will again be convenient to use a complex representation, in which V is regarded as
the real part of an associated complex wave:™
o9}
V(r, 1) = RJ ag(r)e 1Ml dg, (33a)
0
A wave may be said to be ‘almost monochromatic,” if the Fourier amplitudes «,, differ
appreciably from zero only within a narrow range

O-Ao<o<o+iAo  (Ao/o < 1)

around a mean frequency . In such a case one usually speaks of a wave group or a
wave packet.t

To illustrate some of the main properties of a wave group, consider first a wave
formed by the superposition of two plane monochromatic waves of the same
amplitudes and slightly different frequencies and wave numbers, propagated in the
direction of the z-axis:

V(Z, t) —_ ae—i(wt—kz) + ae—i[(a)Jr(Sw)t—(kJrék)z]. (34)

The symbol R is omitted here in accordance with the convention explained earlier. Eq.
(34) may be written in the form

Viz, t) = a[e%i(téerzék) + ef%i(zawfzak)]e,i@,zz)

= 2acos[i(t0w — z0k)]e @ F), (35)
where
@ =+ o, k=k+1ok (36)

are the mean frequency and the mean wave number respectively. Eq. (35) may be
interpreted as representing a plane wave of frequency @ and wavelength 27/k
propagated in the z direction. The amplitude of this wave is, however, not constant, but
varies with time and position, between the values 24 and 0 (Fig. 1.5), giving rise to the
well-known phenomenon of beats. The successive maxima of the amplitude function
are at intervals

4 4
ot = hidd (with z fixed) or oz= i (with ¢ fixed) (37)
ow ok

from each other, whilst the maxima of the phase function are at intervals
2 2
5t = g (with = fixed) or 0z = 7” (with 7 fixed). (38)

Hence, since dw/@ and dk/k are assumed to be small compared with unity, the
amplitude will vary slowly in comparison with the other term.

From (35) it follows that the planes of constant amplitude and, in particular, the
maxima of the amplitude are propagated with the velocity

* For a fuller discussion of the complex representation of real polychromatic waves see §10.2.

1 Strictly speaking, in order that V' should exhibit properties commonly attributed to a wave group, one
should also assume that over the effective frequency range the phase function g, can be approximated by
a linear function of w.





