Graded exercises in Advanced level mathematics

Graded exercises in pure mathematics

Edited by Barrie Hunt

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2001

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times System 3B2

A catalogue record for this book is available from the British Library

ISBN 0 521 63753 8 paperback

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the following for permission to use questions from past papers:

AQA Edexcel OCR	Assessment and Qualifications Alliance Oxford, Cambridge and RSA Examinations
AEB Cambridge London MEI NEAB O&C SMP WJEC	Associated Examining Board The University of Cambridge Local Examinations Syndicate The University of London Examinations and Assessment Council The Oxford and Cambridge Schools Examination Board Northern Examination and Assessment Board The Oxford and Cambridge Schools Examination Board The Oxford and Cambridge Schools Examination Board Welsh Joint Education Committee
Authors	Robin Bevan Bob Carter Andy Hall Barrie Hunt Lorna Lyons Lucy Norman Sarah Payne Caroline Petryszak Rachel Williams
Edited by	Barrie Hunt

Contents

Hov	v to u	se this book	1
0	Back	ground knowledge	3
	0.1	Basic arithmetic – highest common factor; lowest common	
		multiple; fractions	3
	0.2	Laws of indices	4
	0.3	Similar figures	5
	0.4	Basic algebra – multiplying brackets; factorising quadratics; solution of simultaneous equations	7
	0.5	Solving equations; changing the subject of a formula	8
	0.6	The straight line $y = mx + c$; gradient and intercept	9
	0.7	The distance between two points	11
	0.8	Trigonometry – right-angled triangles; sine and cosine rules	11
	0.9	The cone and sphere	14
	0.10	Properties of a circle	16
1	Alget	Dra	20
	1.1	Surds; laws of indices	20
	1.2	Arithmetic of polynomials; factor theorem; remainder theorem;	
		graphs of $y = kx^n (n = \frac{1}{2} \text{ or an integer})$	25
	1.3	Modulus sign; linear and quadratic equations and inequalities (including graphical methods); sum and product of roots of	
		quadratic equations; simultaneous equations – one linear	24
	1 4	and one quadratic	34
	1.4	Partial fractions	40
	1.5	Complex numbers	48
2	Coor	dinate geometry	57
	2.1	Equation of a straight line in the forms $y - y_1 = m(x - x_1)$ and $ax + by + c = 0$; finding the equation of a linear graph; parallel and perpendicular lines; distance between two points in two and three dimensions; mid-point of two points;	57
		equation of a circle	57

iv	Co	ntents	
3	Vecto 3.1	or geometry Addition of vectors; length of vectors; scalar product; angle	64
		between two vectors	64
	3.2	2D vectors; position vectors; ratio theorem; vector equation of a line; intersection of lines	73
	3.3	3D vectors; equations of lines and planes; intersection of lines and planes	81
4	Funct	tions	91
	4.1	Definitions of functions involving formulae and domains;	
	4.2	ranges of functions; graphical representation of functions; composition of functions; inverse functions Algebraic and geometric properties of simple transformations	91
		including $f(x) + a$, $f(x + a)$, $af(x)$, $f(ax)$; composition of transformations up to and including $af(bx + c) + d$	99
5	Sequ	ences	111
	5.1	Inductive definition and formula for the <i>n</i> th term; recognition of periodicity, oscillation, convergence and divergence; formulae for $\Sigma i^k (k = 1, 2, 3)$	111
	5.2	Arithmetic and geometric series; sum to infinity of a	
		convergent series	120
	5.3	$n!, \binom{n}{r}$ notation; binomial expansion of $(1 + x)^n, n \in \mathbb{Z}^+$	127
	5.4	Binomíal series	133
6	Trigo	pnometry	139
	6.1	Radian measure; $s = r\theta$, $A = \frac{1}{2}r^2\theta$	139
	6.2	Sine, cosine and tangent functions; their reciprocals, inverses and graphs	148
	6.3	Trigonometric identities including $\sin^2 \theta + \cos^2 \theta = 1$ etc.;	140
		addition formulae; double angle formulae and $R\sin(\theta + \alpha)$	156
	6.4	Solution of trigonometric equations	163
	6.5	Sum and product formulae	171
7	Expo	nential and logarithmic functions	177
	7.1	Exponential growth and decay; laws of functions logarithms;	1
	7.2	e^x and $\ln x$; solution of $a^x = b$ Reduction of laws to linear form	177 183
8	Diff	rentiation	196
0	8.1	Differentiation of polynomials, trigonometric, exponential	170
		and logarithmic functions; product and quotient rules; composite functions	196

	8.2	Increasing and decreasing functions; rates of change; tangents and normals; maxima, minima and stationary points; points	202
	8.3	of inflexion; optimisation problems Parametric curves, including the parabola, circle and ellipse;	202
	8.4	implicit differentiation; logarithmic differentiation Curve sketching	212 220
	8.5	Formation of simple differential equations; small angle approximations; Maclaurin's series for simple functions	229
9	Integ	ration	238
	9.1	Integration as the reverse of differentiation; integrals of	
		x^n , e^x , $\frac{1}{x}$, sin x etc.; area under curve; definite integrals	238
	9.2	Integration by inspection, substitution, partial fractions and parts	247
	9.3	Choice of method of integration	255
	9.4	Problems involving differential equations; solution of simple differential equations of the form $dy/dx = f(x)$;	
		separation of variables	262
	9.5	Further applications of integration; volumes of revolution; $\int y dx = \lim \sum y \delta x$	272
10	Nume	erical methods	282
	10.1 10.2	Absolute and relative errors; $\delta y \approx (dy/dx)\delta x$ Locating roots of equations by sign changes; simple iterative methods including Newton–Raphson, bisection method, $x_n = g(x_{n-1})$; failure of iterative methods; cobweb and	282
		staircase diagrams	292
	10.3	Numerical integration; solution of differential equations using numerical methods	302
11	Proof	ſ	313
	11.1	Use of mathematical symbols and language $-\Rightarrow$, \Leftarrow , \Leftrightarrow , if and only if, converses, necessary and sufficient conditions; construction of mathematical arguments; proof by	
		contradiction and disproof by counter-example	313
Ans	wers a	nd solutions	321
1 1110	0 1	Background knowledge	321
		Algebra Coordinate geometry	325 341
		Vector geometry	344
		Functions	352
		Sequences	364
	6 7	Frigonometry	372

7	Exponential and logarithmic functions	388
/	Exponential and logarithmic functions	200
8	Differentiation	395
9	Integration	426
10	Numerical methods	442
11	Proof	453

vi

Contents

0.1 Basic arithmetic – highest common factor; lowest common multiple; fractions

$\frac{a}{b} + \frac{c}{d} =$	ad + bc	a	-	
$\overline{b}^+ \overline{d} =$	bd	\overline{b}^{\times}	\overline{d}	\overline{bd}

1 Express as a product of prime factors:

(a)	30	(b)	49	(c)	53	(d)	84
(e)	108	(f)	693	(g)	1144	(h)	14 553

2 Find the highest common factor (HCF) of:

(a)	6, 10	(b)	7, 14	(c)	30, 42
(d)	24, 40, 64	(e)	42, 70, 182	(f)	169, 234, 299
(g)	252, 378, 567	(h)	51, 527, 1343		

3 Find the lowest common multiple (LCM) of:

(a)	6, 10	(b) 7, 14	(c) 30, 42	(d) 2, 3, 4
(e)	5, 25	(f) 5, 7, 11	(g) 4, 21, 22	(h) 14, 18, 21

4 Express each fraction in its lowest terms, without using a calculator:

(a)
$$\frac{7}{35}$$
 (b) $\frac{15}{125}$ (c) $\frac{26}{39}$ (d) $\frac{16}{80}$
(e) $\frac{81}{108}$ (f) $\frac{3a}{12a}$ (g) $\frac{42a^2}{56a}$ (h) $\frac{22ab^2}{121b}$

5 Complete:

(a)
$$\frac{3}{4} = \frac{1}{24}$$
 (b) $\frac{4}{5} = \frac{1}{20}$ (c) $\frac{4}{7} = \frac{1}{21}$ (d) $\frac{7}{8} = \frac{1}{64}$
(e) $\frac{7}{4} = \frac{1}{20}$ (f) $\frac{2a}{3} = \frac{1}{9}$ (g) $\frac{a}{b} = \frac{1}{bx}$ (h) $\frac{2}{a} = \frac{1}{a^2}$

6 Simplify, without using a calculator:

(a)
$$\frac{3}{4} + \frac{2}{3}$$
 (b) $\frac{2}{7} - \frac{1}{5}$ (c) $\frac{4}{13} + \frac{2}{7}$ (d) $\frac{5}{12} - \frac{3}{8}$

(e)
$$1\frac{3}{4} + 2\frac{7}{8}$$
 (f) $5\frac{2}{3} - 3\frac{1}{9}$ (g) $2\frac{1}{7} + \frac{3}{4}$ (h) $3\frac{2}{5} + 2\frac{2}{3}$

7 Express as a single fraction:

(a)
$$\frac{3a}{4} + \frac{2a}{3}$$
 (b) $\frac{2a}{7} - \frac{a}{5}$ (c) $\frac{3}{a} + \frac{2}{a}$ (d) $\frac{3}{a} + \frac{2}{b}$
(e) $\frac{1}{u} + \frac{1}{v}$ (f) $\frac{5}{a} - \frac{2}{a^2}$ (g) $p - \frac{2}{q}$ (h) $\frac{3}{ab} - \frac{5}{ac}$

- **8** Without using a calculator, simplify and express each fraction in its lowest terms:
 - (a) $6 \times \frac{2}{3}$ (b) $\frac{1}{2} \times \frac{3}{4}$ (c) $\frac{3}{5} \times \frac{4}{7}$ (d) $\frac{3}{5} \times \frac{4}{9}$ (e) $\frac{3a}{7} \times \frac{2}{5a}$ (f) $\frac{4a^2}{11} \times \frac{3}{2ab}$ (g) $x \times \frac{1}{x}$ (h) $x^2 \left(\frac{3}{x} + \frac{2}{x^2}\right)$
- **9** Without using a calculator, simplify and express each fraction in its lowest terms:
 - (a) $6 \div \frac{2}{3}$ (b) $\frac{1}{2} \div \frac{3}{4}$ (c) $\frac{3}{5} \div \frac{6}{25}$ (d) $\frac{3}{5} \div \frac{4}{9}$ (e) $\frac{3a}{7} \div \frac{2a}{5}$ (f) $\frac{4}{11a^2} \div \frac{2}{3ab}$ (g) $x \div \frac{1}{x}$ (h) $\frac{1}{x^2} \div \frac{1}{x}$
- **10** Which is larger, $\frac{77}{78}$ or $\frac{78}{79}$?

1 (a) The fraction
$$\frac{20}{91}$$
 is written as $\frac{1}{7} + \frac{1}{a}$. Find *a*.
(b) Calculate: (i) $(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4})$
(ii) $(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \dots (1 - \frac{1}{n})$

12 Find the greatest number which, when divided into 1407 and 2140, leaves remainders of 15 and 23 respectively.

0.2 Laws of indices

$$a^m \times a^n = a^{m+n}$$
 $\frac{a^m}{a^n} = a^{m-n}$ $(a^m)^n = a^{mn}$

1 Simplify:

1

- (a) $a^{3} \times a^{4}$ (b) $a^{7} \times a^{6}$ (c) $a \times a^{3}$ (d) $2a^{3} \times 3a^{2}$ (e) $5a^{2} \times a^{7}$ (f) $\frac{2}{3}a^{3} \times 6a^{4}$
- **2** Simplify:

(a)
$$\frac{x^9}{x^2}$$
 (b) $\frac{p^4}{p^3}$ (c) $\frac{x^{12}}{x}$ (d) $\frac{12a^7}{4a^2}$ (e) $\frac{12a^5}{8a^3}$ (f) $\frac{2a^2b}{6ab^2}$

3 Simplify: (a) $(a^5)^3$ (b) $(2a)^4$ (c) $(5a^3)^2$ (d) $5(a^3)^2$ (e) $(-2a^2)^4$ (f) $(3a^2b^3)^3$ **4** Simplify: (a) $\sqrt{x^2}$ (b) $\sqrt{x^6}$ (c) $\sqrt{a^2b^2}$ (d) $\sqrt{4a^2}$ (e) $\sqrt[3]{-x^6}$ (f) $\sqrt{9a^{10}b^4}$ (c) $\sqrt{a^2b^2}$ (d) $\sqrt{4a^2}$ **5** Expand: (a) $(1+x^2)^2$ (b) $(3-a^3)^2$ (c) $\left(x^2-\frac{1}{x^2}\right)^2$ **6** Simplify: (a) $\frac{x^2+x^5}{x^2}$ (b) $\frac{3x^8+2x^4}{x^4}$

(a)
$$\frac{x^2 + x^3}{x}$$
 (b) $\frac{3x^6 + 2x^4}{x^4}$
(c) $3x^2 + (5x)^2 - \frac{3x^3}{x}$ (d) $\frac{10x^2y + 6xy^2 - 8x^2y^2}{2xy}$

0.3 Similar figures

1 Find the sides marked x and/or y in each of the following pairs of similar triangles.

11

4 A sphere has radius 8 cm and a second sphere has radius 12 cm. What is the ratio of their (a) areas, (b) volumes?

6

- 5 A solid metal cylinder of radius 6 cm and height 12 cm weighs 6 kg. A second cylinder is made from the same material and has radius 8 cm and height 16 cm. How much does this cylinder weigh?
- 6 A liquid is poured into a hollow cone, which is placed with its vertex down. When 400 cm^3 has been poured in, the depth of water is 100 cm. What is the depth of water after (a) 1000 cm^3 , (b) $x \text{ cm}^3$ has been poured in? Plot the graph to show how depth varies with volume.

0.4 Basic algebra – multiplying brackets, factorising quadratics, solution of simultaneous equations

(a+b)(c+d) = ac + ad + bc + bd

1 Expand:

(a)	3(4 + a)	(b)	6(2-3a)	(c)	a(a + 3)
(d)	a(2a + 3b)	(e)	3a(5a - 2b)	(f)	$x\left(2+\frac{3}{x}\right)$

2 Multiply out the brackets:

(a)
$$(x+2)(x+5)$$
 (b) $(x-3)(x+4)$ (c) $(2x+1)(3x+5)$
(d) $(5x-2)(5x+2)$ (e) $(3a+2)^2$ (f) $(p+3q)(2p-5q)$
(g) $\left(x+\frac{2}{x}\right)^2$ (h) $(2x^2+1)(x+3)$

3 Factorise:

(a) $4x + 8y$	(b) $x^2 - 3x$	(c) $5x^2 + 2xy$
(d) $2\pi r^2 + 2\pi rh$	(e) $ut + \frac{1}{2}at^2$	(f) $2x^3 + 3x^4$

4 Factorise:

(a)
$$x^2 + 4x + 3$$

(b) $x^2 + 2x - 3$
(c) $a^2 - 6a + 9$
(d) $x^2 + 7x + 10$
(e) $p^2 + p - 30$
(f) $2a^2 + 7a + 3$
(g) $6y^2 - 7y - 5$
(h) $p^2 - 4q^2$
(i) $p^2 + 4pq - 12q^2$
(j) $15p^2 - 34pq - 16q^2$
(k) $9x^2 + 30xy + 25y^2$
(l) $10a^2 + 31a - 14$

5 Simplify:

(a) $\frac{3x+6}{2}$	(b) $\frac{x^2 + 2x}{x^2 + 2x}$	(a) $x^2 + 3x + 2$	(d) $16 - x^2$
(a) ${3}$	$(0) \frac{1}{x}$	(c) $\frac{x+1}{x+1}$	(u) $\overline{x+4}$

6 Solve the simultaneous equations:

(a)
$$x + y = 4$$

 $x - y = -6$ (b) $x + 2y = 8$
 $x + 5y = 17$ (c) $2x + 3y = 2$
 $x - 2y = 8$

(d)
$$3x - 2y = 1$$

 $-5x + 4y = 3$
(e) $2x + 5y = -14$
 $3x + 2y = 1$
(f) $5x - 3y = 23$
 $7x + 4y = -17$
(g) $4x - 3y = 0$
 $6x + 15y = 13$
(h) $2x + 3y + 4 = 0$
 $5x - y - 7 = 0$

7 Multiply out the brackets:

(a) $(x-1)(x^2+x+1)$ (b) $(a+b)^3$ (c) $(a+b)^4$ (d) $(x+\sqrt{2})(x-\sqrt{2})$

8 Simplify:

(a)
$$(a+b)^2 - (a-b)^2$$
 (b) $\frac{x^3 + 2x^2 + x}{x^2 + x}$ (c) $\frac{x^4 - 13x^2 + 36}{(x-2)(x^2-9)}$

- **9** Solve the pairs of simultaneous equations below, explaining your results graphically.
 - (a) 2x + 3y = 86x + 9y = 12 (b) 2x + 3y = 86x + 9y = 24

0.5 Solving equations; changing the subject of a formula

1 Solve the following equations.

(c) (e) (g) (i)	2x + 1 = 7 5x + 2 = 3x - 5 3(x + 2) = 9x $x^{2} = 81$ $x = \frac{16}{x}$ $x^{2} = 7x$	(d) (f) (h) (j)	2 - 3x = 8 6x + 3 = 8 - 2x 4(2x - 7) = 3(5x + 1) $x^{2} - 25 = 0$ $x^{3} + 27 = 0$ $x - \frac{4}{x} = 0$
· · ·	x(x-4) = 0 (2x - 3)(x + 4)(3x + 2) = 0		x (x+3)(x-7) = 0

2 Rearrange to make the given variable the subject of the formula:

(a) Q = CV (C) (b) $C = 2\pi r$ (r) (c) $F = \frac{9}{5}C + 32$ (C) (d) y = mx + c (m) (e) $P = 2(\ell + w)$ (ℓ) (f) $S = \frac{1}{2}n(a + \ell)$ (a) (g) $v^2 = u^2 + 2as$ (a) (h) $s = ut + \frac{1}{2}at^2$ (a) (i) u = a + (n - 1)d (d) (j) $s = \frac{n}{2}\{2a + (n - 1)d\}$ (d)

3 Rearrange to make the given variable the subject of the formula:

(a)	$E = mc^2 (c)$	(b) $V = \frac{4}{3}\pi r^3$ (r)
(c)	$V = \frac{1}{3}\pi r^2 h (r)$	(d) $y = \frac{4}{x^2}$ (x)
(e)	$I = \frac{1}{2}m(v^2 - u^2) (v)$	(f) $y = 2\sqrt{x} + 3$ (x)
(g)	$T = 2\pi \sqrt{\frac{\ell}{g}} (\ell)$ $y = \frac{1}{x - a} (x)$	(h) $A = \pi (r^2 - r_1^2)$ (r)
(i)	$y = \frac{1}{x - a} (x)$	(j) $c = \sqrt{a^2 + b^2}$ (a)

- **4** In each case, show clearly how the second formula may be obtained from the first.
 - (a) $I = \frac{iR}{R+r}$, $r = \frac{(i-I)R}{I}$ (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $y = \frac{b}{a}\sqrt{(a^2 - x^2)}$ (c) $y = \frac{x-2}{x}$, $x = \frac{2}{1-y}$ (d) $y = \frac{3x+2}{5-x}$, $x = \frac{5y-2}{y+3}$ (e) $I = \frac{Er}{R+r}$, $r = \frac{IR}{E-I}$ (f) $\frac{1}{R} = \frac{1}{u} + \frac{1}{v}$, $v = \frac{Ru}{u-R}$
- 5 The surface area, S, of a cylinder is given by $S = 2\pi r^2 + 2\pi rh$. Its volume, V, is given by $V = \pi r^2 h$. Express V in terms of S and r only.

0.6 The straight line y = mx + c; gradient and intercept

The line y = mx + c has gradient *m*, intercept *c*

Plot the graph of y = 4x + 2 for -3 ≤ x ≤ 3. Calculate the gradient of the line.
 Write down where it crosses the y-axis (the y-intercept).

- 10 Background knowledge
- **2** Complete the table.

	Equation	Gradient	Intercept
(a)	y = 5x - 2		
(b)	y = 1 - 3x		
(c)	$y = \frac{1}{2}x$		
(d)	y = -4 - 3x		
(e)		2	5
(f)		6	-2
(g)		7	$\frac{1}{2}$
(h)		1	0
(i)	2y = 4x + 1		
(j)	5y = 2x		

3 Sketch the following lines.

(a)
$$y = 2x + 5$$
 (b) $y = \frac{1}{2}x + 2$ (c) $y = -x$ (d) $y = -x + 1$

4 Write down the equation of each of the lines shown.

- 5 Find the equation of the line perpendicular to y = 2x 1 which passes through (0, 3).
- 6 State the coordinates of the point where the line $\frac{y}{4} + \frac{x}{6} = 1$ crosses (a) the x-axis, (b) the y-axis.

0.7 The distance between two points

- 1 (a) *P* and *Q* are two points with coordinates (2, 3) and (5, 7) respectively. By applying Pythagoras' theorem to triangle *PQR*, find the distance *PQ*.
 - (b) By drawing a suitable diagram, find a formula for the distance *PQ* where *P* and *Q* have coordinates (x1, y1), (x2, y2) respectively.

- 2 Find the distance between the following pairs of points.
 - (a) (1, 2), (6, 14) (b) (3, 2), (6, 3) (c) (-1, 4), (2, 7)(d) (4, 2), (1, -3)
- **3** Show that the triangle with vertices at (1, 0), (3, 0), $(2, \sqrt{3})$ is equilateral.
- 4 Which of the points (6, 4), (-3, 6), (2, -4) is nearest to (1, 2)?
- **5** Find the distance of the point P(x, y) from (i) O(0, 0) (ii) R(4, 3). If *P* is equidistant from *O* and *R*, find the equation of the locus of *P*.

0.8 Trigonometry – right-angled triangles; sine and cosine rules

12 Background knowledge

2

2 Find the sides marked *x*.

2

x

(f)

14 Background knowledge

5 Use the cosine rule to find the value of x.

6 Use appropriate methods to find all sides and angles for:

0.9 The cone and sphere

Volume of cone $= \frac{1}{3}\pi r^2 h$, Volume of sphere $= \frac{4}{3}\pi r^3$ Surface area of cone $= \pi r \ell$, Surface area of sphere $= 4\pi r^2$ 1 Find the volumes of the following solid objects, giving your answers as multiples of π .

- **3** The earth may be treated as a sphere of radius 6370 km. Find (a) its surface area, (b) its volume.
- **4** Twelve balls, each of radius 3 cm, are immersed in a cylinder of water, radius 10 cm, so that they are each fully submerged. What is the rise in the water level?

- 16 Background knowledge
- 5 A solid metal cube of side 4 cm is melted down and recast as a sphere. Show that its radius is $\sqrt[3]{48/\pi}$.
- 6 A gas balloon, in the shape of a sphere, is made from 1000 m² of material. Estimate the volume of gas in the balloon. What assumptions have you made?
- 7 A hollow sphere has internal diameter 10 cm and external diameter 12 cm. What is the volume of the material used to make the sphere?
- 8 A bucket is in the shape of the frustrum of a cone. The radius of the base is 15 cm and the radius of the top is 20 cm. Find the volume of the bucket, given that its height is 30 cm.

0.10 Properties of a circle

1 Find the value of x in each of the following.

- 18 Background knowledge
 - (c) Find the area of triangle *AOB* and hence find the area of the minor segment cut off by *AB*.

3 (a) AP and BP are tangents to the circle with centre O and radius 5 cm. OP = 13 cm. Find (i) AP, (ii) θ .

(b) OP_1P_2 is a tangent to two circles with centres O_1 , O_2 . $OP_1 = 12$ cm. The radius of the circle with centre O_1 is 5 cm. Find the radius of the circle with centre O_2 .

(c) In the diagram, OA is parallel to PQ. Find the angle QPR in terms of θ .

4 Two circles, radii 3 cm and 5 cm, have centres P, Q respectively, PQ = 7 cm. If the circles intersect at A and B, find the length AB.

5 The distance from the Earth to the sun is 1.50×10^8 km. The diameter of the sun is 1.39×10^6 km. Find the angle subtended by the sun from a point on the Earth. What assumptions have you made?