ACKNOWLEDGEMENTS

The authors gratefully acknowledge the following for permission to use questions from past papers:

AQA Assessment and Qualifications Alliance
Edexcel Oxford, Cambridge and RSA Examinations
OCR Associated Examining Board
AEB The University of Cambridge Local Examinations Syndicate
Cambridge The University of London Examinations and Assessment Council
MEI The Oxford and Cambridge Schools Examination Board
NEAB Northern Examination and Assessment Board
O&C The Oxford and Cambridge Schools Examination Board
SMP The Oxford and Cambridge Schools Examination Board
WJEC Welsh Joint Education Committee

Authors Robin Bevan
Bob Carter
Andy Hall
Barrie Hunt
Lorna Lyons
Lucy Norman
Sarah Payne
Caroline Petryszak
Rachel Williams

Edited by Barrie Hunt
Contents

How to use this book 1

0 **Background knowledge** 3
 0.1 Basic arithmetic – highest common factor; lowest common multiple; fractions 3
 0.2 Laws of indices 4
 0.3 Similar figures 5
 0.4 Basic algebra – multiplying brackets; factorising quadratics; solution of simultaneous equations 7
 0.5 Solving equations; changing the subject of a formula 8
 0.6 The straight line $y = mx + c$; gradient and intercept 9
 0.7 The distance between two points 11
 0.8 Trigonometry – right-angled triangles; sine and cosine rules 11
 0.9 The cone and sphere 14
 0.10 Properties of a circle 16

1 **Algebra** 20
 1.1 Surds; laws of indices 20
 1.2 Arithmetic of polynomials; factor theorem; remainder theorem; graphs of $y = kx^n (n = \frac{1}{2} \text{ or an integer})$ 25
 1.3 Modulus sign; linear and quadratic equations and inequalities (including graphical methods); sum and product of roots of quadratic equations; simultaneous equations – one linear and one quadratic 34
 1.4 Partial fractions 40
 1.5 Complex numbers 48

2 **Coordinate geometry** 57
 2.1 Equation of a straight line in the forms $y - y_1 = m(x - x_1)$ and $ax + by + c = 0$; finding the equation of a linear graph; parallel and perpendicular lines; distance between two points in two and three dimensions; mid-point of two points; equation of a circle 57
3 Vector geometry

3.1 Addition of vectors; length of vectors; scalar product; angle between two vectors 64
3.2 2D vectors; position vectors; ratio theorem; vector equation of a line; intersection of lines 73
3.3 3D vectors; equations of lines and planes; intersection of lines and planes 81

4 Functions

4.1 Definitions of functions involving formulae and domains; ranges of functions; graphical representation of functions; composition of functions; inverse functions 91
4.2 Algebraic and geometric properties of simple transformations including \(f(x) + a, f(x + a), af(x), f(ax) \); composition of transformations up to and including \(af(bx + c) + d \) 99

5 Sequences

5.1 Inductive definition and formula for the \(n \)th term; recognition of periodicity, oscillation, convergence and divergence; formulae for \(\sum k^p \) \((k = 1, 2, 3) \) 111
5.2 Arithmetic and geometric series; sum to infinity of a convergent series 120
5.3 \(n! \), \(\binom{n}{r} \) notation; binomial expansion of \((1 + x)^n \), \(n \in \mathbb{Z}^+ \) 127
5.4 Binomial series 133

6 Trigonometry

6.1 Radian measure; \(s = rt \), \(A = \frac{1}{2} \rho^2 \theta \) 139
6.2 Sine, cosine and tangent functions; their reciprocals, inverses and graphs 148
6.3 Trigonometric identities including \(\sin^2 \theta + \cos^2 \theta = 1 \) etc.; addition formulae; double angle formulae and \(R \sin(\theta + a) \) 156
6.4 Solution of trigonometric equations 163
6.5 Sum and product formulae 171

7 Exponential and logarithmic functions

7.1 Exponential growth and decay; laws of functions logarithms; \(e^x \) and \(\ln x \); solution of \(a^x = b \) 177
7.2 Reduction of laws to linear form 183

8 Differentiation

8.1 Differentiation of polynomials, trigonometric, exponential and logarithmic functions; product and quotient rules; composite functions 196
8.2 Increasing and decreasing functions; rates of change; tangents and normals; maxima, minima and stationary points; points of inflexion; optimisation problems 202

8.3 Parametric curves, including the parabola, circle and ellipse; implicit differentiation; logarithmic differentiation 212

8.4 Curve sketching 220

8.5 Formation of simple differential equations; small angle approximations; Maclaurin’s series for simple functions 229

9 Integration 238

9.1 Integration as the reverse of differentiation; integrals of \(x^n, e^x, \frac{1}{x}, \sin x \) etc.; area under curve; definite integrals 238

9.2 Integration by inspection, substitution, partial fractions and parts 247

9.3 Choice of method of integration 255

9.4 Problems involving differential equations; solution of simple differential equations of the form \(\frac{dy}{dx} = f(x) \); separation of variables 262

9.5 Further applications of integration; volumes of revolution; \(\int y \, dx = \lim \sum y \delta x \) 272

10 Numerical methods 282

10.1 Absolute and relative errors; \(\delta y \approx (dy/dx)\delta x \) 282

10.2 Locating roots of equations by sign changes; simple iterative methods including Newton–Raphson, bisection method, \(x_n = g(x_{n-1}) \); failure of iterative methods; cobweb and staircase diagrams 292

10.3 Numerical integration; solution of differential equations using numerical methods 302

11 Proof 313

11.1 Use of mathematical symbols and language \(\Rightarrow, \Leftarrow, \iff \); and only if, converses, necessary and sufficient conditions; construction of mathematical arguments; proof by contradiction and disproof by counter-example 313

Answers and solutions 321

0 Background knowledge 321
1 Algebra 325
2 Coordinate geometry 341
3 Vector geometry 344
4 Functions 352
5 Sequences 364
6 Trigonometry 372
<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Exponential and logarithmic functions</td>
<td>388</td>
</tr>
<tr>
<td>8</td>
<td>Differentiation</td>
<td>395</td>
</tr>
<tr>
<td>9</td>
<td>Integration</td>
<td>426</td>
</tr>
<tr>
<td>10</td>
<td>Numerical methods</td>
<td>442</td>
</tr>
<tr>
<td>11</td>
<td>Proof</td>
<td>453</td>
</tr>
</tbody>
</table>
Background knowledge

0.1 Basic arithmetic – highest common factor; lowest common multiple; fractions

\[
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \quad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}
\]

1 Express as a product of prime factors:
(a) 30 (b) 49 (c) 53 (d) 84
(e) 108 (f) 693 (g) 1144 (h) 14553

2 Find the highest common factor (HCF) of:
(a) 6, 10 (b) 7, 14 (c) 30, 42
(d) 24, 40, 64 (e) 42, 70, 182 (f) 169, 234, 299
(g) 252, 378, 567 (h) 51, 527, 1343

3 Find the lowest common multiple (LCM) of:
(a) 6, 10 (b) 7, 14 (c) 30, 42 (d) 2, 3, 4
(e) 5, 25 (f) 5, 7, 11 (g) 4, 21, 22 (h) 14, 18, 21

4 Express each fraction in its lowest terms, without using a calculator:
(a) \(\frac{7}{35} \) (b) \(\frac{15}{125} \) (c) \(\frac{\frac{26}{39}}{\frac{16}{39}} \)
(d) \(\frac{22\,a^2}{121\,b} \) (e) \(\frac{3a}{12a} \) (f) \(\frac{42\,a}{56\,a} \)

5 Complete:
(a) \(\frac{3}{4} = \frac{24}{24} \) (b) \(\frac{4}{5} = \frac{20}{20} \) (c) \(\frac{4}{7} = \frac{21}{21} \)
(d) \(\frac{7}{8} = \frac{64}{64} \) (e) \(\frac{7}{4} = \frac{20}{20} \) (f) \(\frac{\frac{2a}{3}}{\frac{9}{9}} \) (g) \(\frac{a}{b} = \frac{bx}{bx} \) (h) \(\frac{2}{a} = \frac{a^2}{a^2} \)

6 Simplify, without using a calculator:
(a) \(\frac{3}{4} + \frac{2}{3} \) (b) \(\frac{2}{7} - \frac{1}{5} \) (c) \(\frac{4}{13} + \frac{2}{7} \)
(d) \(\frac{5}{12} - \frac{3}{8} \)
(e) \(\frac{3}{4} + \frac{7}{8} \)
(f) \(\frac{5}{2} - \frac{3}{9} \)
(g) \(\frac{2}{7} + \frac{3}{4} \)
(h) \(\frac{2}{5} + \frac{2}{3} \)

7 Express as a single fraction:
(a) \(\frac{3a}{4} + \frac{2a}{3} \)
(b) \(\frac{2a}{7} - \frac{a}{5} \)
(c) \(\frac{3a}{2} + \frac{2}{a} \)
(d) \(\frac{3a}{2} - \frac{2}{b} \)

(e) \(\frac{1}{u} + \frac{1}{v} \)
(f) \(\frac{5}{a} - \frac{2}{a^2} \)
(g) \(p - \frac{2}{q} \)
(h) \(\frac{3}{ab} - \frac{5}{2ac} \)

8 Without using a calculator, simplify and express each fraction in its lowest terms:
(a) \(6 \times \frac{3}{5} \)
(b) \(\frac{1}{2} \times \frac{3}{4} \)
(c) \(\frac{3}{7} \times \frac{4}{7} \)
(d) \(\frac{3}{7} \times \frac{4}{7} \)

(e) \(\frac{3a}{7} \times \frac{2}{5a} \)
(f) \(\frac{4a^2}{11} \times \frac{3}{2ab} \)
(g) \(x \times \frac{1}{x} \)
(h) \(x^2 \left(\frac{3}{x} + \frac{2}{x^3} \right) \)

9 Without using a calculator, simplify and express each fraction in its lowest terms:
(a) \(6 \div \frac{3}{5} \)
(b) \(\frac{1}{2} \div \frac{3}{4} \)
(c) \(\frac{3}{7} \div \frac{6}{7} \)
(d) \(\frac{3}{7} \div \frac{4}{7} \)

(e) \(\frac{3a}{7} \div \frac{2a}{5} \)
(f) \(\frac{4}{11a^2} \div \frac{2}{3ab} \)
(g) \(x \div \frac{1}{x} \)
(h) \(\frac{1}{x^2} \div \frac{1}{x} \)

10 Which is larger, \(\frac{77}{78} \) or \(\frac{78}{79} \)?

11 (a) The fraction \(\frac{20}{91} \) is written as \(\frac{1}{7} + \frac{1}{a} \). Find \(a \).
(b) Calculate:
(i) \((1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \)
(ii) \((1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \ldots (1 - \frac{1}{n}) \)

12 Find the greatest number which, when divided into 1407 and 2140, leaves remainders of 15 and 23 respectively.

0.2 Laws of indices

\[
\begin{align*}
\frac{a^m \times a^n}{a^p} &= a^{m+n} \quad & \frac{a^m}{a^n} &= a^{m-n} \quad & (a^m)^n &= a^{mn}
\end{align*}
\]

1 Simplify:
(a) \(a^3 \times a^4 \)
(b) \(a^7 \times a^6 \)
(c) \(a \times a^3 \)
(d) \(2a^3 \times 3a^2 \)
(e) \(5a^2 \times a^7 \)
(f) \(\frac{1}{2}a^3 \times 6a^4 \)

2 Simplify:
(a) \(\frac{x^9}{x^2} \)
(b) \(\frac{p^4}{p^7} \)
(c) \(\frac{x^{12}}{x} \)
(d) \(\frac{12a^7}{4a^2} \)
(e) \(\frac{12a^5}{8a^2} \)
(f) \(\frac{2a^2b}{6ab^2} \)
3 Simplify:
(a) \((a^5)^3\)
(b) \((2a)^4\)
(c) \((5a^3)^2\)
(d) \(5(a^3)^2\)
(e) \((-2a^2)^4\)
(f) \((3a^2b^3)^3\)

4 Simplify:
(a) \(\sqrt{x^2}\)
(b) \(\sqrt{x^6}\)
(c) \(\sqrt{a^2b^2}\)
(d) \(\sqrt{4a^2}\)
(e) \(\sqrt[3]{-x^5}\)
(f) \(\sqrt[3]{9a^{10}b^4}\)

5 Expand:
(a) \((1 + x^2)^2\)
(b) \((3 - a^3)^2\)
(c) \(\left(x^2 - \frac{1}{x^2}\right)^2\)

6 Simplify:
(a) \(\frac{x^2 + x^5}{x}\)
(b) \(\frac{3x^8 + 2x^4}{x^4}\)
(c) \(3x^2 + (5x)^2 - \frac{3x^3}{x}\)
(d) \(\frac{10x^2y + 6xy^2 - 8x^2y^2}{2xy}\)

0.3 Similar figures

1 Find the sides marked \(x\) and/or \(y\) in each of the following pairs of similar triangles.

(a)

(b)

(c)
2. OAB is the cross-section of a cone, radius r, height h. Express y in terms of r, h and x.

3. The coordinates of Q are $(4, 0)$. What are the coordinates of P?

4. A sphere has radius 8 cm and a second sphere has radius 12 cm. What is the ratio of their (a) areas, (b) volumes?
5 A solid metal cylinder of radius 6 cm and height 12 cm weighs 6 kg. A second cylinder is made from the same material and has radius 8 cm and height 16 cm. How much does this cylinder weigh?

6 A liquid is poured into a hollow cone, which is placed with its vertex down. When 400 cm³ has been poured in, the depth of water is 100 cm. What is the depth of water after (a) 1000 cm³, (b) x cm³ has been poured in? Plot the graph to show how depth varies with volume.

0.4 Basic algebra – multiplying brackets, factorising quadratics, solution of simultaneous equations

\[(a + b)(c + d) = ac + ad + bc + bd\]

1 Expand:
 (a) \(3(4 + a)\) (b) \(6(2 - 3a)\) (c) \(a(a + 3)\)
 (d) \(a(2a + 3b)\) (e) \(3a(5a - 2b)\) (f) \(x\left(2 + \frac{3}{x}\right)\)

2 Multiply out the brackets:
 (a) \((x + 2)(x + 5)\) (b) \((x - 3)(x + 4)\) (c) \((2x + 1)(3x + 5)\)
 (d) \((5x - 2)(5x + 2)\) (e) \((3a + 2)^2\) (f) \((p + 3q)(2p - 5q)\)
 (g) \(\left(x + \frac{2}{x}\right)^2\) (h) \((2x^2 + 1)(x + 3)\)

3 Factorise:
 (a) \(4x + 8y\) (b) \(x^2 - 3x\) (c) \(5x^2 + 2xy\)
 (d) \(2\pi r^2 + 2\pi rh\) (e) \(ut + \frac{1}{2}at^2\) (f) \(2x^3 + 3x^4\)

4 Factorise:
 (a) \(x^2 + 4x + 3\) (b) \(x^2 + 2x - 3\) (c) \(a^2 - 6a + 9\)
 (d) \(x^2 + 7x + 10\) (e) \(p^2 + p - 30\) (f) \(2a^2 + 7a + 3\)
 (g) \(6y^2 - 7y - 5\) (h) \(p^2 - 4q^2\) (i) \(p^2 + 4pq - 12q^2\)
 (j) \(15p^2 - 34pq - 16q^2\) (k) \(9x^2 + 30xy + 25y^2\) (l) \(10a^2 + 31a - 14\)

5 Simplify:
 (a) \(\frac{3x + 6}{3}\) (b) \(\frac{x^2 + 2x}{x}\) (c) \(\frac{x^2 + 3x + 2}{x + 1}\) (d) \(\frac{16 - x^2}{x + 4}\)

6 Solve the simultaneous equations:
 (a) \(x + y = 4\) (b) \(x + 2y = 8\) (c) \(2x + 3y = 2\)
 \(x - y = -6\) \(x + 5y = 17\) \(x - 2y = 8\)
(d) \(3x - 2y = 1\) \hspace{1cm} (e) \(2x + 5y = -14\) \hspace{1cm} (f) \(5x - 3y = 23\)
\[-5x + 4y = 3\] \hspace{1cm} \(3x + 2y = 1\) \hspace{1cm} \(7x + 4y = -17\)
(g) \(4x - 3y = 0\) \hspace{1cm} (h) \(2x + 3y + 4 = 0\)
\(6x + 15y = 13\) \hspace{1cm} \(5x - y - 7 = 0\)

7 Multiply out the brackets:
(a) \((x - 1)(x^2 + x + 1)\) \hspace{1cm} (b) \((a + b)^3\) \hspace{1cm} (c) \((a + b)^4\)
(d) \((x + \sqrt{2})(x - \sqrt{2})\)

8 Simplify:
(a) \((a + b)^2 - (a - b)^2\) \hspace{1cm} (b) \(\frac{x^3 + 2x^2 + x}{x^2 + x}\) \hspace{1cm} (c) \(\frac{x^4 - 13x^2 + 36}{(x-2)(x^2-9)}\)

9 Solve the pairs of simultaneous equations below, explaining your results graphically.
(a) \(2x + 3y = 8\) \hspace{1cm} (b) \(2x + 3y = 8\)
\(6x + 9y = 12\) \hspace{1cm} \(6x + 9y = 24\)

0.5 Solving equations; changing the subject of a formula

1 Solve the following equations.
(a) \(2x + 1 = 7\) \hspace{1cm} (b) \(2 - 3x = 8\)
(c) \(5x + 2 = 3x - 5\) \hspace{1cm} (d) \(6x + 3 = 8 - 2x\)
(e) \(3(x + 2) = 9x\) \hspace{1cm} (f) \(4(2x - 7) = 3(5x + 1)\)
(g) \(x^2 = 81\) \hspace{1cm} (h) \(x^2 - 25 = 0\)
(i) \(x = \frac{16}{x}\) \hspace{1cm} (j) \(x^3 + 27 = 0\)
(k) \(x^2 = 7x\) \hspace{1cm} (l) \(x - \frac{4}{x} = 0\)
(m) \(x(x - 4) = 0\) \hspace{1cm} (n) \((x + 3)(x - 7) = 0\)
(o) \((2x - 3)(x + 4)(3x + 2) = 0\)

2 Rearrange to make the given variable the subject of the formula:
(a) \(Q = CV\) \hspace{1cm} (C) \hspace{1cm} (b) \(C = 2\pi r\) \hspace{1cm} (r)
(c) \(F = \frac{2}{3}C + 32\) \hspace{1cm} (C) \hspace{1cm} (d) \(y = mx + c\) \hspace{1cm} (m)
(e) \(P = 2(\ell + w)\) \hspace{1cm} (l) \hspace{1cm} (f) \(S = \frac{1}{2}n(a + \ell)\) \hspace{1cm} (a)
(g) \(v^2 = u^2 + 2as\) \hspace{1cm} (a) \hspace{1cm} (h) \(s = ut + \frac{1}{2}at^2\) \hspace{1cm} (a)
(i) \(u = a + (n - 1)d\) \hspace{1cm} (d) \hspace{1cm} (j) \(s = \frac{1}{2}[2a + (n - 1)d]\) \hspace{1cm} (d)
3 Rearrange to make the given variable the subject of the formula:

(a) \[E = mc^2 \]
(b) \[V = \frac{4}{3} \pi r^3 \]
(c) \[V = \frac{1}{3} \pi r^2 h \]
(d) \[y = \frac{4}{x^2} \]
(e) \[I = \frac{1}{2} m(v^2 - u^2) \]
(f) \[y = 2\sqrt{x} + 3 \]
(g) \[T = 2\pi \sqrt{\frac{l}{g}} \]
(h) \[A = \pi(r^2 - r_i^2) \]
(i) \[y = \frac{1}{x - a} \]
(j) \[c = \sqrt{a^2 + b^2} \]

4 In each case, show clearly how the second formula may be obtained from the first.

(a) \[I = \frac{iR}{R + r}, \quad r = \frac{(i - 1)R}{I} \]
(b) \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad y = \frac{b}{a}\sqrt{(a^2 - x^2)} \]
(c) \[y = \frac{x - 2}{x}, \quad x = \frac{2}{1 - y} \]
(d) \[y = \frac{3x + 2}{5 - x}, \quad x = \frac{5y - 2}{y + 3} \]
(e) \[I = \frac{ER}{R + r}, \quad r = \frac{IE}{E - I} \]
(f) \[\frac{1}{R} = \frac{1}{u} + \frac{1}{v}, \quad v = \frac{Ru}{u - R} \]

5 The surface area, \(S \), of a cylinder is given by \(S = 2\pi r^2 + 2\pi rh \). Its volume, \(V \), is given by \(V = \pi r^2 h \). Express \(V \) in terms of \(S \) and \(r \) only.

0.6 The straight line \(y = mx + c \); gradient and intercept

The line \(y = mx + c \) has gradient \(m \), intercept \(c \)

1 Plot the graph of \(y = 4x + 2 \) for \(-3 \leq x \leq 3\). Calculate the gradient of the line. Write down where it crosses the \(y \)-axis (the \(y \)-intercept).
2 Complete the table.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Gradient</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $y = 5x - 2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) $y = 1 - 3x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) $y = \frac{1}{2}x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) $y = -4 - 3x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) $y = 2$</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(f) $y = 6$</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(g) $y = 7$</td>
<td>$\frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td>(h) $y = 1$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(i) $2y = 4x + 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j) $5y = 2x$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Sketch the following lines.
(a) $y = 2x + 5$ (b) $y = \frac{1}{2}x + 2$ (c) $y = -x$ (d) $y = -x + 1$

4 Write down the equation of each of the lines shown.

(a)

(b)

(c)

(d)

(e)
5 Find the equation of the line perpendicular to \(y = 2x - 1 \) which passes through \((0, 3)\).

6 State the coordinates of the point where the line \(\frac{y}{4} + \frac{x}{6} = 1 \) crosses
(a) the \(x\)-axis, (b) the \(y\)-axis.

0.7 \textbf{The distance between two points}

1 (a) \(P\) and \(Q\) are two points with coordinates \((2, 3)\) and \((5, 7)\) respectively. By applying
Pythagoras’ theorem to triangle \(PQR\), find the distance \(PQ\).

(b) By drawing a suitable diagram, find a formula for the distance \(PQ\) where \(P\) and \(Q\) have
coordinates \((x_1, y_1)\), \((x_2, y_2)\) respectively.

2 Find the distance between the following pairs of points.
(a) \((1, 2), (6, 14)\) (b) \((3, 2), (6, 3)\) (c) \((-1, 4), (2, 7)\)
(d) \((4, 2), (1, -3)\)

3 Show that the triangle with vertices at \((1, 0), (3, 0), (2, \sqrt{3})\) is equilateral.

4 Which of the points \((6, 4), (-3, 6), (2, -4)\) is nearest to \((1, 2)\)?

5 Find the distance of the point \(P(x,y)\) from (i) \(O(0, 0)\) (ii) \(R(4, 3)\).
If \(P\) is equidistant from \(O\) and \(R\), find the equation of the locus of \(P\).

0.8 \textbf{Trigonometry – right-angled triangles; sine and cosine rules}

In right-angled triangles:

\textbf{Pythagoras’ theorem} \(a^2 + b^2 = c^2\)

\[
\sin A = \frac{\text{opp}}{\text{hyp}} = \frac{a}{c}, \quad \cos A = \frac{\text{adj}}{\text{hyp}} = \frac{b}{c},
\]

\[
\tan A = \frac{\text{opp}}{\text{adj}} = \frac{a}{b}
\]

In all triangles:

\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[
\text{cosine rule} \quad a^2 = b^2 + c^2 - 2bc \cos A
\]
1. Find the angles marked x.
 (a) \[\begin{array}{c} \text{5} \\ \text{4} \end{array} \]
 (b) \[\begin{array}{c} \text{2} \\ \text{3} \end{array} \]
 (c) \[\begin{array}{c} \text{2} \\ \text{5} \end{array} \]
 (d) \[\begin{array}{c} \text{6} \\ \text{10} \end{array} \]

2. Find the sides marked x.
 (a) \[\begin{array}{c} \text{7} \\ \text{28°} \\ \text{x} \end{array} \]
 (b) \[\begin{array}{c} \text{12} \\ \text{54°} \\ \text{x} \end{array} \]
 (c) \[\begin{array}{c} \text{3} \\ \text{17°} \\ \text{x} \end{array} \]
 (d) \[\begin{array}{c} \text{9} \\ \text{73°} \\ \text{x} \end{array} \]
 (e) \[\begin{array}{c} \text{8} \\ \text{37°} \\ \text{x} \end{array} \]
 (f) \[\begin{array}{c} \text{9} \\ \text{x} \\ \text{2.3} \end{array} \]
 (g) \[\begin{array}{c} \text{v2} \\ \text{45°} \\ \text{x} \end{array} \]
 (h) \[\begin{array}{c} \text{2} \\ \text{30°} \\ \text{x} \end{array} \]
3 (a) Find the lengths of (i) BC, (ii) AB giving your answer in the form \sqrt{a}.
 (b) Write down exact values for
 (i) $\sin 45^\circ$, (ii) $\cos 45^\circ$, (iii) $\tan 45^\circ$.

4 Use the sine rule to find the value of x.

(a)

(b)

(c)

(d)

(e)

(f)
5. Use the cosine rule to find the value of x.

(a) \hspace{1cm} (b)

(c) \hspace{1cm} (d)

(e) \hspace{1cm} (f)

6. Use appropriate methods to find all sides and angles for:

(a) \hspace{1cm} (b)

0.9. **The cone and sphere**

Volume of cone = $\frac{1}{3}\pi r^2 h$, \hspace{0.5cm} Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of cone = $\pi r l$, \hspace{0.5cm} Surface area of sphere = $4\pi r^2$
1 Find the volumes of the following solid objects, giving your answers as multiples of π.

(a) \[
\text{cone: } \frac{1}{3} \pi \times 3^2 \times 5 = 5 \pi \\
\text{sphere: } \frac{4}{3} \pi \times 3^3 = 36 \pi
\]

(b) \[
\text{cone: } \frac{1}{3} \pi \times 8^2 \times 5 = 66.67 \pi \\
\text{sphere: } \frac{4}{3} \pi \times 8^3 = 211.46 \pi
\]

(c) \[
\text{cone: } \frac{1}{3} \pi \times 3^2 \times 5 = 5 \pi \\
\text{sphere: } \frac{4}{3} \pi \times 3^3 = 36 \pi
\]

(d) \[
\text{cone: } \frac{1}{3} \pi \times 8^2 \times 5 = 66.67 \pi \\
\text{sphere: } \frac{4}{3} \pi \times 8^3 = 211.46 \pi
\]

(e) \[
\text{hemisphere: } \frac{2}{3} \pi \times 6^3 = 113.10 \pi
\]

2 A child’s toy is formed by attaching a cone to a hemisphere as shown. The radius of the hemisphere is 6 cm and the height of the toy is 14 cm. Find (a) its volume, (b) its surface area.

(a) \[
\text{volume: } \frac{1}{3} \pi \times 3^2 \times 14 = 42 \pi \\
\text{surface area: } \pi \times 3 \times 5 + \pi \times 6 + \pi \times 8 = 13 \pi
\]

3 The earth may be treated as a sphere of radius 6370 km. Find (a) its surface area, (b) its volume.

(a) \[
\text{surface area: } 4 \pi \times 6370^2 = 5.1 \
million \times 10^6 \pi \\
\text{volume: } \frac{4}{3} \pi \times 6370^3 = 1.08 \
million \times 10^9 \pi
\]

4 Twelve balls, each of radius 3 cm, are immersed in a cylinder of water, radius 10 cm, so that they are each fully submerged. What is the rise in the water level?

(a) \[
\text{volume of balls: } 12 \times \frac{4}{3} \pi \times 3^3 = 144 \pi \\
\text{rise in water level: } \frac{144 \pi}{100} = 1.44 \pi \text{ cm}
\]
5 A solid metal cube of side 4 cm is melted down and recast as a sphere. Show that its radius is \(\sqrt{48}/\pi\).

6 A gas balloon, in the shape of a sphere, is made from 1000 m\(^2\) of material. Estimate the volume of gas in the balloon. What assumptions have you made?

7 A hollow sphere has internal diameter 10 cm and external diameter 12 cm. What is the volume of the material used to make the sphere?

8 A bucket is in the shape of the frustrum of a cone. The radius of the base is 15 cm and the radius of the top is 20 cm. Find the volume of the bucket, given that its height is 30 cm.

0.10 Properties of a circle

Angle facts:

- The angle in a semi-circle is a right angle.
- The perpendicular from the centre to a chord bisects the chord.
- The radius is perpendicular to the tangent.
1 Find the value of \(x \) in each of the following.

(a) \(AB \) is a chord of a circle, radius 5 cm, at a distance of 3 cm from the centre \(O \). Find (i) the length \(AB \), (ii) the angle \(\theta \).

(b) Find the angle \(\theta \) subtended by the chord \(AB \) in the diagram.
(c) Find the area of triangle AOB and hence find the area of the minor segment cut off by AB.

3 (a) AP and BP are tangents to the circle with centre O and radius 5 cm. $OP = 13$ cm. Find (i) AP, (ii) θ.

(b) OP_1P_2 is a tangent to two circles with centres O_1, O_2. $OP_1 = 12$ cm. The radius of the circle with centre O_1 is 5 cm. Find the radius of the circle with centre O_2.
(c) In the diagram, \(OA \) is parallel to \(PQ \). Find the angle \(QPR \) in terms of \(\theta \).

4 Two circles, radii 3 cm and 5 cm, have centres \(P, Q \) respectively, \(PQ = 7 \) cm. If the circles intersect at \(A \) and \(B \), find the length \(AB \).

5 The distance from the Earth to the sun is \(1.50 \times 10^8 \) km. The diameter of the sun is \(1.39 \times 10^9 \) km.
Find the angle subtended by the sun from a point on the Earth. What assumptions have you made?