Fast analytical
 techniques for electrical and electronic circuits

Vatché Vorpérian

Jet Propulsion Laboratory
California Institute of Technology

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom
CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK,
40 West 20th Street, New York, NY 10011-4211, USA
477 Wiliamstown Road, Port Melbourne VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
(C) Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10.5/14pt System Poltype ${ }^{\circledR}$ [vN]

A catalogue record for this book is available from the British Library

ISBN 0521624428 hardback

Contents

Preface xi
1 Introduction 1
1.1 Fast analytical methods 1
1.2 Input impedance of a bridge circuit 2
1.3 Input impedance of a bridge circuit with a dependent source 4
1.4 Input impedance of a reactive bridge circuit with a dependent source 8
1.5 Review 11
Problems 11
References 14
2 Transfer functions 15
2.1 Definition of a transfer function 15
2.2 The six types of transfer functions of an electrical circuit 17
2.3 Determination of the poles of a network 19
2.4 Determination of the zeros of a transfer function 24
2.5 The complete response, stability and transfer functions 34
2.6 Magnitude and phase response 41
2.7 First-order transfer functions 43
2.8 Second-order transfer functions 48
2.9 Review 52
Problems 53
3 The extra element theorem 61
3.1 Introduction 61
3.2 Null double injection 62
3.3 The EET for impedance elements 74
3.4 The EET for dependent sources 88
3.5 Review 98
Problems 99
References 106
$4 \quad$ The N-extra element theorem 107
4.1 Introduction 107
4.2 The 2-EET for impedance elements 108
4.3 The 2-EET for dependent sources 130
4.4 The NEET 137
4.5 A proof of the NEET 147
4.6 Review 153
Problems 154
References 162
5 Electronic negative feedback 163
5.1 Introduction 163
5.2 The EET for dependent sources and formulation of electronic feedback 164
5.2.1 Gain analysis 164
5.2.2 Driving-point analysis 170
5.2.3 Loop gain 175
5.3 Does this circuit have feedback or not? This is not the question 179
5.4 Gain analysis of feedback amplifiers 180
5.5 Driving-point analysis of feedback amplifiers 195
5.5.1 Input impedance for current mixing 196
5.5.2 Output impedance for voltage sensing 200
5.5.3 Input admittance for voltage mixing 204
5.5.4 Output admittance for current sensing 209
5.6 Loop gain: a more detailed look 213
5.7 Stability 218
5.8 Phase and gain margins 226
5.9 Review 233
Problems 234
References 251
6 High-frequency and microwave circuits 252
6.1 Introduction 252
6.2 Cascode MOS amplifier 252
6.3 Fifth-order Chebyshev low-pass filter 261
6.4 MESFET amplifier 265
6.5 Review 310
Problems 311
References 316
$7 \quad$ Passive filters 317
7.1 Introduction 317
7.2 $R C$ filters with gain 317
7.3 Lattice filters 327
7.4 Resonant filters 335
7.4.1 Parallel resonant filters 336
7.4.2 Tapped parallel resonant filter 339
7.4.3 The three-winding transformer 344
7.5 Infinite scaling networks 349
7.5.1 Infinite grid 349
7.5.2 Infinite scaling networks 351
7.5.3 A generalized linear element and a unified R, L and C model 356
7.6 Review 358
Problems 358
References 364
8 PWM switching dc-to-dc converters 365
8.1 Introduction 365
8.2 Basic characteristics of dc-to-dc converters 366
8.3 The buck converter 370
8.4 The boost converter 386
8.5 The buck-boost converter 392
8.6 The Cuk converter 397
8.7 The PWM switch and its invariant terminal characteristics 400
8.8 Average large-signal and small-signal equivalent circuit models of the PWM switch 402
8.9 The PWM switch in other converter topologies 411
8.10 The effect of parasitic elements on the model of the PWM switch 426
8.11 Feedback control of dc-to-dc converters 432
8.11.1 Single-loop voltage feedback control 433
8.11.2 Current feedback control 440
8.11.3 Voltage feedback control with peak current control 453
8.12 Review 460
Problems 461
References 470
Index 472

1 Introduction
 The joys of network analysis

1.1 Fast analytical methods

The universally adopted method of teaching network theory is the formal and systematic method of nodal or loop analysis. Although the matrix algebra of formal network analysis is ideal for obtaining numerical answers by a computer, it fails hopelessly for obtaining analytical answers which provide physical insight into the operation of the circuit. It is not hard to see that, when numerical values of circuit components are not given, inverting a 3×3, or higher-order, matrix with symbolic entries can be very time consuming. This is only part of the problem of matrix analysis because even if one were to survive the algebra of inverting a matrix symbolically, the answer could be an unintelligible and lengthy symbolic expression. It is important to realize that an analytical answer is not merely a symbolic expression, but an expression in which various circuit elements are grouped together in one or more of the following ways:
(a) series and parallel combinations of resistances

$$
\text { Example: } R_{1}+R_{2} \|\left(R_{3}+R_{4}\right)
$$

(b) ratios of resistances, time constants and gains

Example: $1+\frac{R}{R_{3} \| R_{4}}, 1+\frac{g_{m} R_{L}}{A_{o}}, A_{m}\left(1+\frac{\tau_{1}}{\tau_{2}}\right)$
(c) polynomials in the frequency variable, s, with a unity leading term and coefficients in terms of sums and products of time constants

Example: $1+s\left(\tau_{1}+\tau_{2}\right)+s^{2} \tau_{1} \tau_{3}$
Such analytical expressions have been called low-entropy expressions by R. D. Middlebrook ${ }^{1}$ because they reveal useful and recognizable information (low noise or entropy) about the performance of the circuit. Another extremely important advantage of low-entropy expressions is that they can be easily approximated into simpler expressions which are useful for design purposes. For instance, a seriesparallel combination of resistances, as in (a), can be simplified by ignoring the smaller of two resistances in a series combination and the larger of two resistances
in a parallel combination. When ratios are used as in (b), they can be simplified depending on their relative magnitude to unity. Depending on the relative magnitude of time constants, frequency response characteristics as in (c) can be simplified and either factored into two real roots, with simple analytical expressions, or remain as a complex quadratic factor.

In light of the above, the aim of fast analytical techniques can be stated as follows: fast derivation of low-entropy analytical expressions for electrical circuits. The following examples illustrate the power of this new approach to circuit analysis.

1.2 Input impedance of a bridge circuit

We will determine the input resistance, $R_{i n}$, of the bridge circuit ${ }^{2}$ in Fig.1.1 in a few simple steps using the extra element theorem (EET). The EET ${ }^{3}$ and its extension, the N-extra element theorem ${ }^{4}$ (NEET), are the main basic tools of fast network analysis discussed in this book. Both of these theorems will be introduced, derived and stated in their general form in later chapters, but since the EET for an impedance function is so trivial, we will use it now to obtain an early glimpse of what lies ahead.

Figure 1.1

We see in Fig. 1.1 that if any one of the resistors of the bridge is zero or infinite, we can write $R_{i n}$ immediately by inspection. For instance, if we designate R_{B} as the extra element and let $R_{B} \rightarrow \infty$, as shown in Fig. 1.2a, we can immediately write:
$\left.R_{i n}\right|_{R_{B} \rightarrow \infty}=\left(R_{1}+R_{3}\right) \|\left(R_{2}+R_{4}\right)$

The EET now requires us to perform two additional calculations as shown in Figs. $1.2 b$ and c. We denote the port across which the extra element is connected by (B).

Figure 1.2

In Fig. 1.2b, we determine the resistance looking into the network from port (B) with the input port short and obtain by inspection:
$\mathscr{R}^{(B)}=R_{1}\left\|R_{3}+R_{2}\right\| R_{4}$
(b)

(c)

Figure 1.2 (cont.)

In Fig. 1.2c, we determine the resistance looking into the network from port (B) with the input port open and obtain by inspection:
$R^{(B)}=\left(R_{1}+R_{2}\right) \|\left(R_{3}+R_{4}\right)$
We now assemble these three separate and independent calculations to obtain the input resistance $R_{i n}$ in Fig. 1.1 using the following formula given by the EET:
$R_{i n}=\left.R_{i n}\right|_{R_{B} \rightarrow \infty} \frac{1+\frac{\mathscr{R}^{(B)}}{R_{B}}}{1+\frac{R^{(B)}}{R_{B}}}$

Upon substituting Eqs. (1.1), (1.2) and (1.3) in (1.4):
$R_{i n}=\left(R_{1}+R_{3}\right) \|\left(R_{2}+R_{4}\right) \frac{1+\frac{R_{1}\left\|R_{3}+R_{2}\right\| R_{4}}{R_{B}}}{1+\frac{\left(R_{1}+R_{2}\right) \|\left(R_{3}+R_{4}\right)}{R_{B}}}$
Equation (1.5) is a low-entropy result because in it $R_{i n}$ is expressed in terms of series and parallel combinations of resistances and ratios of such resistances added to unity. Such an expression, for a given set of typical element values, can be easily approximated using rules of series and parallel combinations wherever applicable. In this expression, we can also see the contribution of the bridge resistance, R_{B}, to the input resistance, $R_{i n}$, directly.

We can also appreciate two important advantages of the method of EET used in deriving $R_{i n}$ above. First, since the method of EET requires far less algebra than nodal analysis, it is considerably faster and simpler. Second, since the EET requires three separate and independent calculations, any error in the analysis does not spread and remains confined to a portion of the final answer. In a sense, this kind of analysis yields modular answers - if there is anything wrong with a particular module, it can be replaced without affecting the entire answer. This not only makes the analysis faster, but also the debugging of the analysis faster as well.

1.3 Input impedance of a bridge circuit with a dependent source

In this section we consider the effect of a dependent current source, ${ }^{2,5} g_{m} v_{1}$, in Fig. 1.3, on the input resistance $R_{i n}$. This circuit is borrowed from a well-known

Figure 1.3
textbook by L. O. Chua and Pen-Min Lin ${ }^{5}$ in which the authors determine the contribution of the transconductance, g_{m}, to the input resistance, $R_{i n}$, using the
parameter-extraction method. Because of the considerable amount of matrix algebra required by the parameter-extraction method, which would become prohibitively complex if all elements were in symbolic form, Chua and Lin have assigned numerical values ($R_{1}=1 \Omega, R_{2}=0.2 \Omega, R_{3}=0.5 \Omega, R_{4}=10 \Omega$ and $R_{B}=0.1 \Omega$) to all the resistors and determined:
$R_{i n}=\frac{96.3+5.1 g_{m}}{137.7+10.5 g_{m}} \Omega$
We will now show how to determine $R_{i n}$ in three simple steps by applying the EET to the dependent current source $g_{m} v_{1}$. To demonstrate the superior power of this method of analysis, we will keep all circuit elements in symbolic form.

In Fig. 1.3, we designate the dependent current source as the extra element and set it to zero by letting $g_{m}=0$. This reduces the circuit to the bridge circuit in Section 1.2, as shown in Fig. 1.4a. Hence, we have from Eq. (1.5):
$\left.R_{i n}\right|_{g_{m \rightarrow 0}}=\left(R_{1}+R_{3}\right) \|\left(R_{2}+R_{4}\right) \frac{1+\frac{R_{1}\left\|R_{3}+R_{2}\right\| R_{4}}{R_{B}}}{1+\frac{\left(R_{1}+R_{2}\right) \|\left(R_{3}+R_{4}\right)}{R_{B}}}$

Figure 1.4

The EET now requires us to perform two additional calculations as shown in Figs. $1.4 b$ and c in which the dependent current source is replaced with an independent one, i_{m}, pointing in the opposite direction. In Fig. $1.4 b$ we determine the transresistance, v_{1} / i_{m}, which is the inverse of the transconductance gain g_{m} of the dependent source, with the input port short. Inspecting Fig. 1.4b, we see that $R_{1} \| R_{3}$ and $R_{2} \| R_{4}$ form a voltage divider connected across an equivalent Thevinin voltage source, $i_{m} R_{B}$, in series with a Thevinin resistance, R_{B}, so that we have:

$$
\begin{equation*}
\frac{v_{1}}{i_{m} R_{B}}=\frac{R_{1} \| R_{3}}{R_{B}+R_{2}\left\|R_{4}+R_{1}\right\| R_{3}} \tag{1.8}
\end{equation*}
$$

It follows that the inverse gain, with the input port short, is given by:

$$
\begin{equation*}
\overline{\mathscr{G}}^{(m)}=\left.\frac{v_{1}}{i_{m}}\right|_{(\text {in }) \rightarrow \text { short }}=\frac{R_{1} \| R_{3}}{R_{B}+R_{2}\left\|R_{4}+R_{1}\right\| R_{3}} R_{B} \tag{1.9}
\end{equation*}
$$

Similarly, we can determine in Fig. 1.4c that the inverse gain, with the input port open, is given by:

$$
\begin{equation*}
\bar{G}^{(m)}=\left.\frac{v_{1}}{i_{m}}\right|_{(i n) \rightarrow \text { open }}=\frac{R_{B} \|\left(R_{3}+R_{4}\right)}{R_{1}+R_{2}+R_{B} \|\left(R_{3}+R_{4}\right)} R_{1} \tag{1.10}
\end{equation*}
$$

(b)

Figure 1.4 (cont.)

We can now assemble the final answer using the three separate calculations in Eqs. (1.7), (1.9) and (1.10) according to the following formula given by the EET:

$$
\begin{equation*}
R_{i n}=\left.R_{i n}\right|_{g_{m} \rightarrow 0} \frac{1+g_{m} \overline{\mathscr{G}}^{(m)}}{1+g_{m} \bar{G}^{(m)}} \tag{1.11}
\end{equation*}
$$

Upon substituting, we get:

$$
\begin{gather*}
R_{i n}=\left(R_{1}+R_{3}\right) \|\left(R_{2}+R_{4}\right) \frac{1+\frac{R_{1}\left\|R_{3}+R_{2}\right\| R_{4}}{R_{B}}}{1+\frac{\left(R_{1}+R_{2}\right) \|\left(R_{3}+R_{4}\right)}{R_{B}}} \tag{1.12}\\
\times \frac{1+\frac{g_{m} R_{B}}{1+\left(R_{B}+R_{2} \| R_{4}\right) / R_{1} \| R_{3}}}{1+\frac{g_{m} R_{1}}{1+\left(R_{1}+R_{2}\right) / R_{B} \|\left(R_{3}+R_{4}\right)}}
\end{gather*}
$$

Hence, by doing far less algebra than that required by the parameter-extraction
method, we have obtained a low-entropy symbolic expression which is far superior to the one given in Eq. (1.6)

The EET, quite naturally, also allows for the value of a dependent source to become infinite so that a particular transfer becomes simplified in the same manner as that of an ideal operational amplifier circuit. In the case of $R_{i n}$ in Fig. 1.3 , the EET allows us to write:

$$
\begin{equation*}
R_{i n}=\left.R_{i n}\right|_{g_{m \rightarrow \infty}} \frac{1+\frac{1}{g_{m} \overline{\mathscr{G}}^{(m)}}}{1+\frac{1}{g_{m} \bar{G}^{(m)}}} \tag{1.13}
\end{equation*}
$$

in which $\bar{G}^{(m)}$ and $\overline{\mathscr{G}}^{(m)}$ are the same as before and $\left.R_{i n}\right|_{g_{m} \rightarrow \infty}$ is determined in Fig. 1.5. The gain from v_{1} to $g_{m} v_{1}$ reminds us of an opamp connected in some kind of

Figure 1.5
feedback fashion whose details we do not need to know at all. Now, if we let g_{m} become infinite, then $v_{1} \rightarrow 0$ very much in the same manner as the differential input voltage of an opamp tends to zero when the gain becomes infinite and the output voltage stays finite. We can see in Fig. 1.5 that, with $g_{m} \rightarrow \infty$ and $v_{1} \rightarrow 0$, the current through R_{1} becomes zero and i_{T} flows entirely through R_{2} creating a voltage drop $i_{T} R_{2}$ across it. At the same time, v_{T} appears across R_{3} causing a current v_{T} / R_{3} to flow through it. We can also see that the voltage drop across R_{4}, when $v_{1}=0$, is equal to $v_{T}-i_{T} R_{2}$ so that the current through it is simply $\left(v_{T}-i_{T} R_{2}\right) / R_{4}$. Summing the currents at the lower node of the bridge, we obtain:
$i_{T}=\frac{v_{T}}{R_{3}}+\frac{v_{T}-i_{T} R_{2}}{R_{4}}$
It follows from Eq. (1.14) that:

$$
\begin{equation*}
\frac{v_{T}}{i_{T}}=\left.R_{i n}\right|_{g_{m} \rightarrow \infty}=\frac{R_{3} \| R_{4}}{1+\frac{R_{2}}{R_{4}}} \tag{1.15}
\end{equation*}
$$

Substituting Eq. (1.15) in (1.13) we obtain another expression for $R_{\text {in }}$ given by:
$R_{\text {in }}=\frac{R_{3} \| R_{4}}{1+\frac{R_{2}}{R_{4}}} \frac{1+\frac{1+R_{2} \| R_{4} / R_{B}}{g_{m}\left(R_{B}+R_{2} \| R_{4}\right)\left\|R_{1}\right\| R_{3}}}{1+\frac{1+R_{2} / R_{1}}{g_{m}\left(R_{1}+R_{2}\right)\left\|R_{B}\right\|\left(R_{3}+R_{4}\right)}}$
Although Eq. (1.16) looks simpler than Eq. (1.12), both are very useful analytical expressions. For very small values of g_{m}, Eq. (1.12) is a better expression because the bilinear factor containing g_{m} is close to unity and $R_{i n}$ is mostly dictated by the bridge circuit. If on the other hand g_{m} is very large, Eq. (1.16) is a better expression because $R_{i n}$ is mostly given by Eq. (1.15), and the bilinear function of g_{m} in Eq. (1.16) is close to unity.

1.4 Input impedance of a reactive bridge circuit with a dependent source

Consider now the reactive bridge circuit in Fig. 1.6 for which the input impedance ${ }^{2}$ is to be determined. By designating the capacitor as the extra element, we will show how easily $Z_{\text {in }}(s)$ can be determined by simply analyzing a few purely resistive

Figure 1.6
circuits. In other words, we will see how the EET allows one to determine a reactive transfer function, such as $Z_{i n}(s)$, without ever having to deal with a reactive component such as $1 / s C_{B}$. In fact, as we will see later, the most natural application of the EET and NEET is in the reduction of a circuit with N reactive elements to a set of purely resistive circuits.

If we designate $Z_{B}=1 / s C_{B}$ as the extra element and let $Z_{B} \rightarrow \infty$, we obtain the
circuit in Fig. 1.7a, which is a special case of the circuit in Fig. 1.3 whose input impedance is given by Eq. (1.12). The derivation of the input impedance of the circuits in Figs. 1.3 and $1.7 a$ are identical, with the exception that $R_{B} \rightarrow \infty$ in Fig. 1.7a. Hence, by letting $R_{B} \rightarrow \infty$ in Eq. (1.12) we obtain for Fig. 1.7a:
$\left.Z_{i n}(s)\right|_{Z_{B} \rightarrow \infty}=\left(R_{1}+R_{3}\right) \|\left(R_{2}+R_{4}\right) \frac{1+g_{m} R_{1} \| R_{3}}{1+\frac{g_{m} R_{1}}{1+\left(R_{1}+R_{2}\right) /\left(R_{3}+R_{4}\right)}}$

Figure 1.7
To obtain $Z_{\text {in }}(s)$, all we need to do is determine $\mathscr{R}^{(B)}$ and $R^{(B)}$, shown in Figs. $1.7 b$ and c, respectively, and apply the EET:

$$
\begin{align*}
Z_{i n}(s) & =\left.Z_{i n}(s)\right|_{Z_{B} \rightarrow \infty} \frac{1+\frac{\mathscr{R}^{(B)}}{Z_{B}}}{1+\frac{R^{(B)}}{Z_{B}}} \tag{1.18}\\
& =R_{o} \frac{1+s C_{B} \mathscr{R}^{(B)}}{1+s C_{B} R^{(B)}}
\end{align*}
$$

in which $R_{o}=\left.Z_{i n}(s)\right|_{Z_{B} \rightarrow \infty}$ and is given by Eq. (1.17).
In Fig. 1.7b, the current i_{T} is given by the sum of $g_{m} v_{1}$ and the current through the branch $R_{1}\left\|R_{3}+R_{2}\right\| R_{4}$, so that we have:
$i_{T}=g_{m} v_{1}+\frac{v_{T}}{R_{1}\left\|R_{3}+R_{2}\right\| R_{4}}$
In Fig. $1.7 b$ we can also see that:
$v_{1}=v_{T} \frac{R_{1} \| R_{3}}{R_{1}\left\|R_{3}+R_{2}\right\| R_{4}}$
Substituting Eq. (1.20) in (1.19), we obtain:

(c)

Figure 1.7 (cont.)
$\mathscr{R}^{(B)}=\frac{v_{T}}{i_{T}}=\frac{R_{1}\left\|R_{3}+R_{2}\right\| R_{4}}{1+g_{m} R_{1} \| R_{3}}$
In Fig. 1.7c, the current i_{T} consists of the sum of $g_{m} v_{1}$ and the current through the branches $\left(R_{1}+R_{2}\right)$ and $\left(R_{3}+R_{4}\right)$ so that we have:
$i_{T}=g_{m} v_{1}+\frac{v_{T}}{R_{1}+R_{2}}+\frac{v_{T}}{R_{3}+R_{4}}$
In Fig. 1.7 c we can also see that:
$v_{1}=v_{T} \frac{R_{1}}{R_{1}+R_{2}}$
Substituting Eq. (1.23) in (1.22) we obtain:
$i_{T}=\frac{v_{T}\left(g_{m} R_{1}+1\right)}{R_{1}+R_{2}}+\frac{v_{T}}{R_{3}+R_{4}}$
whence it follows that:
$R^{(B)}=\frac{v_{T}}{i_{T}}=\frac{R_{1}+R_{2}}{1+g_{m} R_{1}} \|\left(R_{3}+R_{4}\right)$
With $\mathscr{R}^{(B)}$ and $R^{(B)}$ determined, we can write $Z_{\text {in }}(s)$ in Eq. (1.18) in pole-zero form:
$Z_{i n}(s)=R_{o} \frac{1+s / \omega_{z}}{1+s / \omega_{p}}$
in which:
$\omega_{z}=\frac{1}{C_{B} \mathscr{R}^{(B)}}=\frac{1+g_{m} R_{1} \| R_{3}}{C_{B}\left(R_{1}\left\|R_{3}+R_{2}\right\| R_{4}\right)}$
$\omega_{p}=\frac{1}{C_{B} R^{(B)}}=\frac{1}{C_{B} \frac{R_{1}+R_{2}}{1+g_{m} R_{1}} \|\left(R_{3}+R_{4}\right)}$
And such are the joys of network analysis!

1.5 Review

Although the matrix algebra of nodal or loop analysis is useful in obtaining numerical solutions of linear electrical circuits, it is not useful in obtaining meaningful analytical results in symbolic form. An analytical answer is not a mere collection of symbols but an answer in which the symbols are arranged in useful, or low-entropy, forms such as series-parallel combinations and ratios of various elements and time constants. This book presents efficient analytical tools for fast derivation of low-entropy results for electrical circuits. One such analytical tool is the extra element theorem (EET) which we have introduced in this chapter by way of examples in which the input impedance of various bridge circuits is determined.

Problems

1.1 High entropy versus low entropy. In order to appreciate the difference between high- and low-entropy expressions, consider the following for the input impedance of the circuit in the black box:
$R_{i n}=\frac{R_{4} R_{1} R_{2}+R_{4} R_{1} R_{3}+R_{4} R_{2} R_{3}}{R_{4} R_{2}+R_{3} R_{4}+R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}$

Figure 1.8

Are you able to make anything out of this expression? How does this expression simplify if $R_{2} \ll R_{3}$? Consider now:

$$
\begin{equation*}
R_{i n}=R_{4} \|\left(R_{1}+R_{2} \| R_{3}\right) \tag{1.30}
\end{equation*}
$$

Show that the two expressions above are equivalent. Which of the two is more
meaningful? Using Eq. (1.30) show that when $R_{2} \ll R_{3}$, we have the following simplification:
$R_{\text {in }} \approx R_{4} \|\left(R_{1}+R_{2}\right)$
1.2 Impedance using the EET. Following the example in Section 1.2, show in a few steps that the input impedance of the circuit below is given by:

$$
\begin{equation*}
Z_{i n}=R_{o} \frac{1+s / \omega_{1}}{1+s / \omega_{2}} \tag{1.32}
\end{equation*}
$$

Figure 1.9
where:

$$
\left.\begin{array}{l}
R_{o}=R_{1}+R_{2} \|\left(R_{3}+R_{4}\right) \tag{1.33a,b,c}\\
\omega_{1}=\frac{1}{C R_{4} \|\left(R_{3}+R_{1} \| R_{2}\right)} \\
\omega_{2}=\frac{1}{C\left[R_{1}+R_{3} \|\left(R_{4}+R_{2}\right)\right]}
\end{array}\right\}
$$

Hint: Refer to Figs. 1.9b, c and d below and apply the EET in Eq. (1.4).

Figure 1.9 (cont.)
1.3 Output resistance of a current source using the EET. Show that the output resistance of the BJT current source in Fig. 1.10a, using the equivalent circuit model in Fig. 1.10b, is given by:
$\left.R_{\text {out }}=\frac{r_{\mu}+R_{s}}{1+\frac{R_{s}}{R_{E}}} \frac{1+\frac{1}{g_{m} r_{\pi}}\left(1+\frac{1}{g_{m}+R_{s} \| r_{\mu}}\right.}{R_{E} \| r_{o}}\right)$

(a)

Figure 1.10
Hint: Refer to the example in Section 1.3 and to Figs. $1.10 c-e$ below.
(c)

Figure 1.10 (cont.)

REFERENCES

1. R. D. Middlebrook, "Low-entropy expressions: the key to design-oriented analysis", IEEE Frontiers in Education, Twenty-First Annual Conference, Purdue University, Sept. 21-24, 1991, pp. 399-403.
2. V. Vorpérian, "Improved circuit analysis techniques require minimum algebra", Electronic Design News, August 3, 1995, pp. 125-134.
3. R. D. Middlebrook, "Null double injection and the extra element theorem", IEEE Transactions on Education, Vol. 32, No. 3, August 1989, pp. 167-180.
4. R. D. Middlebrook, V. Vorpérian, J. Lindal, "The N Extra Element Theorem", IEEE Transactions on Circuits and Systems - I: Fundamental Theory and Applications, Vol. 45, No. 9, Sept. 1998, pp. 919-935.
5. L. O. Chua and Pen-Min Lin, Computer Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques, Prentice Hall, New York, 1975, pp. 568-569.
