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1 Introduction
The joys of network analysis

1.1 Fast analytical methods

The universally adopted method of teaching network theory is the formal and
systematic method of nodal or loop analysis. Although the matrix algebra of
formal network analysis is ideal for obtaining numerical answers by a computer, it
fails hopelessly for obtaining analytical answers which provide physical insight
into the operation of the circuit. It is not hard to see that, when numerical values of
circuit components are not given, inverting a 3 � 3, or higher-order, matrix with
symbolic entries can be very time consuming. This is only part of the problem of
matrix analysis because even if one were to survive the algebra of inverting a
matrix symbolically, the answer could be an unintelligible and lengthy symbolic
expression. It is important to realize that an analytical answer is not merely a
symbolic expression, but an expression in which various circuit elements are
grouped together in one or more of the following ways:

(a) series and parallel combinations of resistances

Example: R
�
�R

�
� (R

�
�R

�
)

(b) ratios of resistances, time constants and gains

Example: 1 �
R

R
�
�R

�

, 1 �
g
�
R

�
A

�

, A
��1 �

�
�

�
�
�

(c) polynomials in the frequency variable, s, with a unity leading term and coeffi-
cients in terms of sums and products of time constants

Example: 1 � s(�
�
� �

�
) � s��

�
�
�

Such analytical expressions have been called low-entropy expressions by R. D.
Middlebrook� because they reveal useful and recognizable information (low noise
or entropy) about the performance of the circuit. Another extremely important
advantage of low-entropy expressions is that they can be easily approximated into
simpler expressions which are useful for design purposes. For instance, a series-
parallel combination of resistances, as in (a), can be simplified by ignoring the
smaller of two resistances in a series combination and the larger of two resistances
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in a parallel combination. When ratios are used as in (b), they can be simplified
depending on their relative magnitude to unity. Depending on the relative magni-
tude of time constants, frequency response characteristics as in (c) can be simplified
and either factored into two real roots, with simple analytical expressions, or
remain as a complex quadratic factor.

In light of the above, the aim of fast analytical techniques can be stated as
follows: fast derivation of low-entropy analytical expressions for electrical circuits.
The following examples illustrate the power of this new approach to circuit
analysis.

1.2 Input impedance of a bridge circuit

We will determine the input resistance,R
��

, of the bridge circuit� in Fig.1.1 in a few
simple steps using the extra element theorem (EET). The EET� and its extension,
the N-extra element theorem� (NEET), are the main basic tools of fast network
analysis discussed in this book. Both of these theorems will be introduced, derived
and stated in their general form in later chapters, but since the EET for an
impedance function is so trivial, we will use it now to obtain an early glimpse of
what lies ahead.

Figure 1.1

We see in Fig. 1.1 that if any one of the resistors of the bridge is zero or infinite,
we can writeR

��
immediately by inspection. For instance, if we designateR

�
as the

extra element and let R
�
��, as shown in Fig. 1.2a, we can immediately write:

R
��

�
����

� (R
�
�R

�
) � (R

�
�R

�
) (1.1)

The EET now requires us to perform two additional calculations as shown in Figs.
1.2b and c. We denote the port across which the extra element is connected by (B).
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Figure 1.2

In Fig. 1.2b, we determine the resistance looking into the network from port (B)
with the input port short and obtain by inspection:

R��	�R
�
�R

�
�R

�
�R

�
(1.2)

Figure 1.2 (cont.)

In Fig. 1.2c, we determine the resistance looking into the network from port (B)
with the input port open and obtain by inspection:

R��	� (R
�
�R

�
) � (R

�
�R

�
) (1.3)

We now assemble these three separate and independent calculations to obtain the
input resistance R

��
in Fig. 1.1 using the following formula given by the EET:

R
��

�R
��

�
����

1 �
R��	

R
�

1 �
R��	

R
�

(1.4)
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Upon substituting Eqs. (1.1), (1.2) and (1.3) in (1.4):

R
��

� (R
�
�R

�
) � (R

�
�R

�
)

1 �
R

�
�R

�
�R

�
�R

�
R

�

1 �
(R

�
�R

�
) � (R

�
�R

�
)

R
�

(1.5)

Equation (1.5) is a low-entropy result because in it R
��

is expressed in terms of
series and parallel combinations of resistances and ratios of such resistances added
to unity. Such an expression, for a given set of typical element values, can be easily
approximated using rules of series and parallel combinations wherever applicable.
In this expression, we can also see the contribution of the bridge resistance, R

�
, to

the input resistance, R
��

, directly.
We can also appreciate two important advantages of the method of EET used in

deriving R
��

above. First, since the method of EET requires far less algebra than
nodal analysis, it is considerably faster and simpler. Second, since the EET
requires three separate and independent calculations, any error in the analysis does
not spread and remains confined to a portion of the final answer. In a sense, this
kind of analysis yields modular answers — if there is anything wrong with a
particular module, it can be replaced without affecting the entire answer. This not
only makes the analysis faster, but also the debugging of the analysis faster as well.

1.3 Input impedance of a bridge circuit with a dependent source

In this section we consider the effect of a dependent current source,�
� g
�
v
�

, in Fig.
1.3, on the input resistance R

��
. This circuit is borrowed from a well-known

Figure 1.3

textbook by L. O. Chua and Pen-Min Lin� in which the authors determine the
contribution of the transconductance, g

�
, to the input resistance, R

��
, using the
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parameter-extraction method. Because of the considerable amount of matrix
algebra required by the parameter-extraction method, which would become pro-
hibitively complex if all elements were in symbolic form, Chua and Lin have
assigned numerical values (R

�
� 1 �, R

�
� 0.2 �, R

�
� 0.5 �, R

�
� 10 � and

R
�
� 0.1 �) to all the resistors and determined:

R
��

�
96.3 � 5.1g

�
137.7 � 10.5g

�

� (1.6)

We will now show how to determine R
��

in three simple steps by applying the
EET to the dependent current source g

�
v
�
. To demonstrate the superior power of

this method of analysis, we will keep all circuit elements in symbolic form.
In Fig. 1.3, we designate the dependent current source as the extra element and

set it to zero by letting g
�
� 0. This reduces the circuit to the bridge circuit in

Section 1.2, as shown in Fig. 1.4a. Hence, we have from Eq. (1.5):

R
��

�
	���

� (R
�
�R

�
) � (R

�
�R

�
)

1 �
R

�
�R

�
�R

�
�R

�
R

�

1 �
(R

�
�R

�
) � (R

�
�R

�
)

R
�

(1.7)

Figure 1.4

The EET now requires us to perform two additional calculations as shown in
Figs. 1.4b and c in which the dependent current source is replaced with an
independent one, i

�
, pointing in the opposite direction. In Fig. 1.4b we determine

the transresistance, v
�

/i
�

, which is the inverse of the transconductance gain g
�

of
the dependent source, with the input port short. Inspecting Fig. 1.4b, we see that
R

�
�R

�
and R

�
�R

�
form a voltage divider connected across an equivalent

Thevinin voltage source, i
�
R

�
, in series with a Thevinin resistance, R

�
, so that we

have:

5 1.3 Input impedance: bridge circuit with dependent source



v
�

i
�
R

�

�
R

�
�R

�
R

�
�R

�
�R

�
�R

�
�R

�

(1.8)

It follows that the inverse gain, with the input port short, is given by:

G
 ��	�
v
�
i
�
�
���	�����

�
R

�
�R

�
R

�
�R

�
�R

�
�R

�
�R

�

R
�

(1.9)

Similarly, we can determine in Fig. 1.4c that the inverse gain, with the input port
open, is given by:

G
 ��	�
v
�
i
�
�
���	�����

�
R

�
� (R

�
�R

�
)

R
�
�R

�
�R

�
� (R

�
�R

�
)
R

�
(1.10)

Figure 1.4 (cont.)

We can now assemble the final answer using the three separate calculations in Eqs.
(1.7), (1.9) and (1.10) according to the following formula given by the EET:

R
��

�R
��

�
	���

1 � g
�
G
 ��	

1 � g
�
G
 ��	

(1.11)

Upon substituting, we get:

R
��

� (R
�
�R

�
) � (R

�
�R

�
)

1 �
R

�
�R

�
�R

�
�R

�
R

�

1 �
(R

�
�R

�
) � (R

�
�R

�
)

R
�

(1.12)

�
1 �

g
�
R

�
1 � (R

�
�R

�
�R

�
)/R

�
�R

�

1 �
g
�
R

�
1 � (R

�
�R

�
)/R

�
� (R

�
�R

�
)

Hence, by doing far less algebra than that required by the parameter-extraction
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method, we have obtained a low-entropy symbolic expression which is far superior
to the one given in Eq. (1.6)

The EET, quite naturally, also allows for the value of a dependent source to
become infinite so that a particular transfer becomes simplified in the same
manner as that of an ideal operational amplifier circuit. In the case of R

��
in Fig.

1.3, the EET allows us to write:

R
��

�R
��

�
	���

1 �
1

g
�
G
 ��	

1 �
1

g
�
G
 ��	

(1.13)

in which G
 ��	 and G
 ��	 are the same as before and R
��

�
	���

is determined in Fig.
1.5. The gain from v

�
to g

�
v
�

reminds us of an opamp connected in some kind of

Figure 1.5

feedback fashion whose details we do not need to know at all. Now, if we let g
�

become infinite, then v
�
� 0 very much in the same manner as the differential input

voltage of an opamp tends to zero when the gain becomes infinite and the output
voltage stays finite. We can see in Fig. 1.5 that, with g

�
�� and v

�
� 0, the

current through R
�

becomes zero and i
�

flows entirely through R
�

creating a
voltage drop i

�
R

�
across it. At the same time, v

�
appears across R

�
causing a

current v
�

/R
�

to flow through it. We can also see that the voltage drop across R
�

,
when v

�
� 0, is equal to v

�
 i

�
R

�
so that the current through it is simply

(v
�
 i

�
R

�
)/R

�
. Summing the currents at the lower node of the bridge, we obtain:

i
�
�
v
�
R

�

�
v
�
 i

�
R

�
R

�

(1.14)

It follows from Eq. (1.14) that:

7 1.3 Input impedance: bridge circuit with dependent source



v
�
i
�

�R
��

�
	���

�
R

�
�R

�

1 �
R

�
R

�

(1.15)

Substituting Eq. (1.15) in (1.13) we obtain another expression for R
��

given by:

R
��

�
R

�
�R

�

1 �
R

�
R

�

1 �
1 �R

�
�R

�
/R

�
g
�

(R
�
�R

�
�R

�
) �R

�
�R

�

1 �
1 �R

�
/R

�
g
�

(R
�
�R

�
) �R

�
� (R

�
�R

�
)

(1.16)

Although Eq. (1.16) looks simpler than Eq. (1.12), both are very useful analytical
expressions. For very small values of g

�
, Eq. (1.12) is a better expression because

the bilinear factor containing g
�

is close to unity and R
��

is mostly dictated by the
bridge circuit. If on the other hand g

�
is very large, Eq. (1.16) is a better expression

because R
��

is mostly given by Eq. (1.15), and the bilinear function of g
�

in Eq.
(1.16) is close to unity.

1.4 Input impedance of a reactive bridge circuit with a dependent source

Consider now the reactive bridge circuit in Fig. 1.6 for which the input impedance�
is to be determined. By designating the capacitor as the extra element, we will show
how easily Z

��
(s) can be determined by simply analyzing a few purely resistive

Figure 1.6

circuits. In other words, we will see how the EET allows one to determine a
reactive transfer function, such asZ

��
(s), without ever having to deal with a reactive

component such as 1/sC
�

. In fact, as we will see later, the most natural application
of the EET and NEET is in the reduction of a circuit withN reactive elements to a
set of purely resistive circuits.

If we designate Z
�
� 1/sC

�
as the extra element and let Z

�
��, we obtain the

8 Introduction



circuit in Fig. 1.7a, which is a special case of the circuit in Fig. 1.3 whose input
impedance is given by Eq. (1.12). The derivation of the input impedance of the
circuits in Figs. 1.3 and 1.7a are identical, with the exception that R

�
�� in Fig.

1.7a. Hence, by letting R
�
�� in Eq. (1.12) we obtain for Fig. 1.7a:

Z
��

(s) �
����

� (R
�
�R

�
) � (R

�
�R

�
)

1 � g
�
R

�
�R

�

1 �
g
�
R

�
1 � (R

�
�R

�
)/(R

�
�R

�
)

(1.17)

Figure 1.7

To obtain Z
��

(s), all we need to do is determine R��	 and R��	, shown in Figs. 1.7b
and c, respectively, and apply the EET:

Z
��

(s) �Z
��

(s) �
����

1 �
R��	

Z
�

1 �
R��	

Z
�

(1.18)

�R
�

1 � sC
�
R��	

1 � sC
�
R��	

in which R
�
�Z

��
(s) �

����
and is given by Eq. (1.17).

In Fig. 1.7b, the current i
�

is given by the sum of g
�
v
�

and the current through
the branch R

�
�R

�
�R

�
�R

�
, so that we have:

i
�
� g

�
v
�
�

v
�

R
�
�R

�
�R

�
�R

�

(1.19)

In Fig. 1.7b we can also see that:

v
�
� v

�

R
�
�R

�
R

�
�R

�
�R

�
�R

�

(1.20)

Substituting Eq. (1.20) in (1.19), we obtain:
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Figure 1.7 (cont.)

R��	�
v
�
i
�

�
R

�
�R

�
�R

�
�R

�
1 � g

�
R

�
�R

�

(1.21)

In Fig. 1.7c, the current i
�

consists of the sum of g
�
v
�

and the current through
the branches (R

�
�R

�
) and (R

�
�R

�
) so that we have:

i
�
� g

�
v
�
�

v
�

R
�
�R

�

�
v
�

R
�
�R

�

(1.22)

In Fig. 1.7c we can also see that:

v
�
� v

�

R
�

R
�
�R

�

(1.23)

Substituting Eq. (1.23) in (1.22) we obtain:

i
�
�
v
�

(g
�
R

�
� 1)

R
�
�R

�

�
v
�

R
�
�R

�

(1.24)

whence it follows that:

R��	�
v
�
i
�

�
R

�
�R

�
1 � g

�
R

�
� (R

�
�R

�
) (1.25)

WithR��	 andR��	 determined, we can writeZ
��

(s) in Eq. (1.18) in pole-zero form:

Z
��

(s) �R
�

1 � s/�
�

1 � s/�
�

(1.26)

in which:

�
�
�

1

C
�
R��	

�
1 � g

�
R

�
�R

�
C

�
(R

�
�R

�
�R

�
�R

�
)

(1.27)
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�
�
�

1

C
�
R��	

�
1

C
�

R
�
�R

�
1 � g

�
R

�
� (R

�
�R

�
)

(1.28)

And such are the joys of network analysis!

1.5 Review

Although the matrix algebra of nodal or loop analysis is useful in obtaining
numerical solutions of linear electrical circuits, it is not useful in obtaining mean-
ingful analytical results in symbolic form. An analytical answer is not a mere
collection of symbols but an answer in which the symbols are arranged in useful, or
low-entropy, forms such as series-parallel combinations and ratios of various
elements and time constants. This book presents efficient analytical tools for fast
derivation of low-entropy results for electrical circuits. One such analytical tool is
the extra element theorem (EET) which we have introduced in this chapter by way
of examples in which the input impedance of various bridge circuits is determined.

Problems

1.1 High entropy versus low entropy. In order to appreciate the difference between
high- and low-entropy expressions, consider the following for the input impedance
of the circuit in the black box:

R
��

�
R

�
R

�
R

�
�R

�
R

�
R

�
�R

�
R

�
R

�
R

�
R

�
�R

�
R

�
�R

�
R

�
�R

�
R

�
�R

�
R

�

(1.29)

Figure 1.8

Are you able to make anything out of this expression? How does this expression
simplify if R

�
�R

�
? Consider now:

R
��

�R
�
� (R

�
�R

�
�R

�
) (1.30)

Show that the two expressions above are equivalent. Which of the two is more
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meaningful? Using Eq. (1.30) show that when R
�
�R

�
, we have the following

simplification:

R
��

�R
�
� (R

�
�R

�
) (1.31)

1.2 Impedance using the EET. Following the example in Section 1.2, show in a few
steps that the input impedance of the circuit below is given by:

Z
��

�R
�

1 � s/�
�

1 � s/�
�

(1.32)

Figure 1.9

where:

R
�
�R

�
�R

�
� (R

�
�R

�
)

�
�
�

1

CR
�
� (R

�
�R

�
�R

�
)

(1.33a, b, c)

�
�
�

1

C[R
�
�R

�
� (R

�
�R

�
)]





Hint: Refer to Figs. 1.9b, c and d below and apply the EET in Eq. (1.4).

Figure 1.9 (cont.)
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1.3 Output resistance of a current source using the EET. Show that the output
resistance of the BJT current source in Fig. 1.10a, using the equivalent circuit
model in Fig. 1.10b, is given by:

R
���

�
r��R

�

1 �
R

�
R

�

1 �
1

g
�
r��1 �

r��R
�
� r�

R
�
� r

�
�

1 �
1

g
�
r
�
�1 �

r� � r
�

r� � (R
�
�R

�
)�

(1.34)

Figure 1.10

Hint: Refer to the example in Section 1.3 and to Figs. 1.10c—e below.

0

Figure 1.10 (cont.)
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