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4 Lévy stochastic processes and limit theorems 23

4.1 Stable distributions 23

4.2 Scaling and self-similarity 26

4.3 Limit theorem for stable distributions 27

4.4 Power-law distributions 28

4.4.1 The St Petersburg paradox 28

4.4.2 Power laws in finite systems 29

v



vi Contents

4.5 Price change statistics 29

4.6 Infinitely divisible random processes 31

4.6.1 Stable processes 31

4.6.2 Poisson process 31

4.6.3 Gamma distributed random variables 32

4.6.4 Uniformly distributed random variables 32

4.7 Summary 33

5 Scales in financial data 34

5.1 Price scales in financial markets 35

5.2 Time scales in financial markets 39

5.3 Summary 43

6 Stationarity and time correlation 44

6.1 Stationary stochastic processes 44

6.2 Correlation 45

6.3 Short-range correlated random processes 49

6.4 Long-range correlated random processes 49

6.5 Short-range compared with long-range correlated noise 51

7 Time correlation in financial time series 53

7.1 Autocorrelation function and spectral density 53

7.2 Higher-order correlations: The volatility 57

7.3 Stationarity of price changes 58

7.4 Summary 59

8 Stochastic models of price dynamics 60
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Introduction

1.1 Motivation

Since the 1970s, a series of significant changes has taken place in the

world of finance. One key year was 1973, when currencies began to be

traded in financial markets and their values determined by the foreign

exchange market, a financial market active 24 hours a day all over the

world. During that same year, Black and Scholes [18] published the first

paper that presented a rational option-pricing formula.

Since that time, the volume of foreign exchange trading has been growing

at an impressive rate. The transaction volume in 1995 was 80 times what it

was in 1973. An even more impressive growth has taken place in the field of

derivative products. The total value of financial derivative market contracts

issued in 1996 was 35 trillion US dollars. Contracts totaling approximately

25 trillion USD were negotiated in the over-the-counter market (i.e., directly

between firms or financial institutions), and the rest (approximately 10 trillion

USD) in specialized exchanges that deal only in derivative contracts. Today,

financial markets facilitate the trading of huge amounts of money, assets,

and goods in a competitive global environment.

A second revolution began in the 1980s when electronic trading, already

a part of the environment of the major stock exchanges, was adapted to the

foreign exchange market. The electronic storing of data relating to financial

contracts – or to prices at which traders are willing to buy (bid quotes) or sell

(ask quotes) a financial asset – was put in place at about the same time that

electronic trading became widespread. One result is that today a huge amount

of electronically stored financial data is readily available. These data are

characterized by the property of being high-frequency data – the average time

delay between two records can be as short as a few seconds. The enormous

expansion of financial markets requires strong investments in money and
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2 Introduction

human resources to achieve reliable quantification and minimization of risk

for the financial institutions involved.

1.2 Pioneering approaches

In this book we discuss the application to financial markets of such concepts

as power-law distributions, correlations, scaling, unpredictable time series,

and random processes. During the past 30 years, physicists have achieved

important results in the field of phase transitions, statistical mechanics,

nonlinear dynamics, and disordered systems. In these fields, power laws,

scaling, and unpredictable (stochastic or deterministic) time series are present

and the current interpretation of the underlying physics is often obtained

using these concepts.

With this background in mind, it may surprise scholars trained in the

natural sciences to learn that the first use of a power-law distribution – and

the first mathematical formalization of a random walk – took place in the

social sciences. Almost exactly 100 years ago, the Italian social economist

Pareto investigated the statistical character of the wealth of individuals in a

stable economy by modeling them using the distribution

y ∼ x−ν , (1.1)

where y is the number of people having income x or greater than x and

ν is an exponent that Pareto estimated to be 1.5 [132]. Pareto noticed

that his result was quite general and applicable to nations ‘as different as

those of England, of Ireland, of Germany, of the Italian cities, and even of

Peru’.

It should be fully appreciated that the concept of a power-law distribution

is counterintuitive, because it may lack any characteristic scale. This property

prevented the use of power-law distributions in the natural sciences until

the recent emergence of new paradigms (i) in probability theory, thanks

to the work of Lévy [92] and thanks to the application of power-law

distributions to several problems pursued by Mandelbrot [103]; and (ii) in

the study of phase transitions, which introduced the concepts of scaling for

thermodynamic functions and correlation functions [147].

Another concept ubiquitous in the natural sciences is the random walk.

The first theoretical description of a random walk in the natural sciences

was performed in 1905 by Einstein [48] in his famous paper dealing with

the determination of the Avogadro number. In subsequent years, the math-

ematics of the random walk was made more rigorous by Wiener [158], and
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now the random walk concept has spread across almost all research areas

in the natural sciences.

The first formalization of a random walk was not in a publication by

Einstein, but in a doctoral thesis by Bachelier [8]. Bachelier, a French math-

ematician, presented his thesis to the faculty of sciences at the Academy of

Paris on 29 March 1900, for the degree of Docteur en Sciences Mathématiques.

His advisor was Poincaré, one of the greatest mathematicians of his time.

The thesis, entitled Théorie de la spéculation, is surprising in several respects.

It deals with the pricing of options in speculative markets, an activity that

today is extremely important in financial markets where derivative securities

– those whose value depends on the values of other more basic underlying

variables – are regularly traded on many different exchanges. To complete

this task, Bachelier determined the probability of price changes by writing

down what is now called the Chapman–Kolmogorov equation and recogniz-

ing that what is now called a Wiener process satisfies the diffusion equation

(this point was rediscovered by Einstein in his 1905 paper on Brownian

motion). Retrospectively analyzed, Bachelier’s thesis lacks rigor in some of

its mathematical and economic points. Specifically, the determination of a

Gaussian distribution for the price changes was – mathematically speaking

– not sufficiently motivated. On the economic side, Bachelier investigated

price changes, whereas economists are mainly dealing with changes in the

logarithm of price. However, these limitations do not diminish the value of

Bachelier’s pioneering work.

To put Bachelier’s work into perspective, the Black & Scholes option-

pricing model – considered the milestone in option-pricing theory – was

published in 1973, almost three-quarters of a century after the publication of

his thesis. Moreover, theorists and practitioners are aware that the Black &

Scholes model needs correction in its application, meaning that the problem

of which stochastic process describes the changes in the logarithm of prices

in a financial market is still an open one.

The problem of the distribution of price changes has been considered by

several authors since the 1950s, which was the period when mathematicians

began to show interest in the modeling of stock market prices. Bachelier’s

original proposal of Gaussian distributed price changes was soon replaced by

a model in which stock prices are log-normal distributed, i.e., stock prices are

performing a geometric Brownian motion. In a geometric Brownian motion,

the differences of the logarithms of prices are Gaussian distributed. This

model is known to provide only a first approximation of what is observed

in real data. For this reason, a number of alternative models have been

proposed with the aim of explaining
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(i) the empirical evidence that the tails of measured distributions are fatter

than expected for a geometric Brownian motion; and

(ii) the time fluctuations of the second moment of price changes.

Among the alternative models proposed, ‘the most revolutionary develop-

ment in the theory of speculative prices since Bachelier’s initial work’ [38],

is Mandelbrot’s hypothesis that price changes follow a Lévy stable dis-

tribution [102]. Lévy stable processes are stochastic processes obeying a

generalized central limit theorem. By obeying a generalized form of the cen-

tral limit theorem, they have a number of interesting properties. They are

stable (as are the more common Gaussian processes) – i.e., the sum of two

independent stochastic processes x1 and x2 characterized by the same Lévy

distribution of index α is itself a stochastic process characterized by a Lévy

distribution of the same index. The shape of the distribution is maintained

(is stable) by summing up independent identically distributed Lévy stable

random variables.

As we shall see, Lévy stable processes define a basin of attraction in the

functional space of probability density functions. The sum of independent

identically distributed stochastic processes Sn ≡ ∑n
i=1 xi characterized by a

probability density function with power-law tails,

P (x) ∼ x−(1+α), (1.2)

will converge, in probability, to a Lévy stable stochastic process of index α

when n tends to infinity [66].

This property tells us that the distribution of a Lévy stable process is a

power-law distribution for large values of the stochastic variable x. The fact

that power-law distributions may lack a typical scale is reflected in Lévy

stable processes by the property that the variance of Lévy stable processes is

infinite for α < 2. Stochastic processes with infinite variance, although well

defined mathematically, are extremely difficult to use and, moreover, raise

fundamental questions when applied to real systems. For example, in physical

systems the second moment is often related to the system temperature, so

infinite variances imply an infinite (or undefined) temperature. In financial

systems, an infinite variance would complicate the important task of risk

estimation.

1.3 The chaos approach

A widely accepted belief in financial theory is that time series of asset prices

are unpredictable. This belief is the cornerstone of the description of price
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dynamics as stochastic processes. Since the 1980s it has been recognized in

the physical sciences that unpredictable time series and stochastic processes

are not synonymous. Specifically, chaos theory has shown that unpredictable

time series can arise from deterministic nonlinear systems. The results ob-

tained in the study of physical and biological systems triggered an interest

in economic systems, and theoretical and empirical studies have investigated

whether the time evolution of asset prices in financial markets might indeed

be due to underlying nonlinear deterministic dynamics of a (limited) number

of variables.

One of the goals of researchers studying financial markets with the tools

of nonlinear dynamics has been to reconstruct the (hypothetical) strange

attractor present in the chaotic time evolution and to measure its dimension

d. The reconstruction of the underlying attractor and its dimension d is not

an easy task. The more reliable estimation of d is the inequality d > 6. For

chaotic systems with d > 3, it is rather difficult to distinguish between a

chaotic time evolution and a random process, especially if the underlying

deterministic dynamics are unknown. Hence, from an empirical point of

view, it is quite unlikely that it will be possible to discriminate between the

random and the chaotic hypotheses.

Although it cannot be ruled out that financial markets follow chaotic

dynamics, we choose to work within a paradigm that asserts price dynamics

are stochastic processes. Our choice is motivated by the observation that the

time evolution of an asset price depends on all the information affecting (or

believed to be affecting) the investigated asset and it seems unlikely to us

that all this information can be essentially described by a small number of

nonlinear deterministic equations.

1.4 The present focus

Financial markets exhibit several of the properties that characterize complex

systems. They are open systems in which many subunits interact nonlinearly

in the presence of feedback. In financial markets, the governing rules are

rather stable and the time evolution of the system is continuously moni-

tored. It is now possible to develop models and to test their accuracy and

predictive power using available data, since large databases exist even for

high-frequency data.

One of the more active areas in finance is the pricing of derivative

instruments. In the simplest case, an asset is described by a stochastic process

and a derivative security (or contingent claim) is evaluated on the basis of

the type of security and the value and statistical properties of the underlying
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asset. This problem presents at least two different aspects: (i) ‘fundamental’

aspects, which are related to the nature of the random process of the asset,

and (ii) ‘applied’ or ‘technical’ aspects, which are related to the solution of

the option-pricing problem under the assumption that the underlying asset

performs the proposed random process.

Recently, a growing number of physicists have attempted to analyze and

model financial markets and, more generally, economic systems. The interest

of this community in financial and economic systems has roots that date

back to 1936, when Majorana wrote a pioneering paper on the essential

analogy between statistical laws in physics and in the social sciences [101].

This unorthodox point of view was considered of marginal interest until

recently. Indeed, prior to the 1990s, very few professional physicists did any

research associated with social or economic systems. The exceptions included

Kadanoff [76], Montroll [125], and a group of physical scientists at the Santa

Fe Institute [5].

Since 1990, the physics research activity in this field has become less

episodic and a research community has begun to emerge. New interdisci-

plinary journals have been published, conferences have been organized, and

a set of potentially tractable scientific problems has been provisionally iden-

tified. The research activity of this group of physicists is complementary to

the most traditional approaches of finance and mathematical finance. One

characteristic difference is the emphasis that physicists put on the empir-

ical analysis of economic data. Another is the background of theory and

method in the field of statistical physics developed over the past 30 years

that physicists bring to the subject. The concepts of scaling, universality,

disordered frustrated systems, and self-organized systems might be helpful in

the analysis and modeling of financial and economic systems. One argument

that is sometimes raised at this point is that an empirical analysis performed

on financial or economic data is not equivalent to the usual experimental

investigation that takes place in physical sciences. In other words, it is im-

possible to perform large-scale experiments in economics and finance that

could falsify any given theory.

We note that this limitation is not specific to economic and financial

systems, but also affects such well developed areas of physics as astrophysics,

atmospheric physics, and geophysics. Hence, in analogy to activity in these

more established areas, we find that we are able to test and falsify any theories

associated with the currently available sets of financial and economic data

provided in the form of recorded files of financial and economic activity.

Among the important areas of physics research dealing with financial and

economic systems, one concerns the complete statistical characterization of



1.4 The present focus 7

the stochastic process of price changes of a financial asset. Several studies

have been performed that focus on different aspects of the analyzed stochastic

process, e.g., the shape of the distribution of price changes [22, 64, 67, 105, 111,

135], the temporal memory [35, 93, 95, 112], and the higher-order statistical

properties [6, 31, 126]. This is still an active area, and attempts are ongoing

to develop the most satisfactory stochastic model describing all the features

encountered in empirical analyses. One important accomplishment in this

area is an almost complete consensus concerning the finiteness of the second

moment of price changes. This has been a longstanding problem in finance,

and its resolution has come about because of the renewed interest in the

empirical study of financial systems.

A second area concerns the development of a theoretical model that is

able to encompass all the essential features of real financial markets. Several

models have been proposed [10, 11, 23, 25, 29, 90, 91, 104, 117, 142, 146, 149–

152], and some of the main properties of the stochastic dynamics of stock

price are reproduced by these models as, for example, the leptokurtic ‘fat-

tailed’ non-Gaussian shape of the distribution of price differences. Parallel

attempts in the modeling of financial markets have been developed by

economists [98–100].

Other areas that are undergoing intense investigations deal with the ratio-

nal pricing of a derivative product when some of the canonical assumptions

of the Black & Scholes model are relaxed [7, 21, 22] and with aspects of port-

folio selection and its dynamical optimization [14, 62, 63, 116, 145]. A further

area of research considers analogies and differences between price dynamics

in a financial market and such physical processes as turbulence [64, 112, 113]

and ecological systems [55, 135].

One common theme encountered in these research areas is the time cor-

relation of a financial series. The detection of the presence of a higher-order

correlation in price changes has motivated a reconsideration of some beliefs

of what is termed ‘technical analysis’ [155].

In addition to the studies that analyze and model financial systems, there

are studies of the income distribution of firms and studies of the statistical

properties of their growth rates [2, 3, 148, 153]. The statistical properties of

the economic performances of complex organizations such as universities or

entire countries have also been investigated [89].

This brief presentation of some of the current efforts in this emerging

discipline has only illustrative purposes and cannot be exhaustive. For a more

complete overview, consider, for example, the proceedings of conferences

dedicated to these topics [78, 88, 109].




