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1

Introduction

In July 1965 the Astrophysical Journal (vol. 142, p. 419), an American

periodical, announced the discovery of a background electromagnetic

radiation. This radiation was isotropic and unpolarized, exhibited no

seasonal variation and was of cosmic origin. The authors of the article were

two physicists from the Bell Telephone Laboratory, Arno Penzias and

Robert Wilson.

In the same issue of the journal (vol. 142, p. 414) four astrophysicists

from the Institute for Advanced Study at Princeton, Robert Dicke, Jim

Peebles, Peter Roll and David Wilkinson, suggested that this newly dis-

covered radiation had in fact been emitted during a phase of the universe

when it was very hot and dense. This was precisely what had been

predicted by the so-called big bang model proposed by George Gamow,

Ralph Alpher and Robert Herman ®fteen years previously and following

the work of Georges LemaõÃtre.

The discovery of this radiation, now named the `cosmic background

radiation' was and still is considered a very powerful argument in favour of

the big bang model. In recognition of the capital importance of their

discovery, Penzias and Wilson were awarded the Nobel Prize for Physics in

1978.

1.1 The discovery of the background radiation

In fact the discovery of the cosmological microwave background radiation

was partly due to chance. At the end of the 1950s the laboratories of the

Bell Telephone Company had started to work on the problems of satellite

communication. NASA was soon to launch the ECHO satellite in 1959.

The expected signal from this satellite would be very weak, therefore it

was necessary to develop a highly sensitive receiver. Two of the Bell
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Company laboratories were well placed to contribute to this programme.

At one of these, Murray Hill, work was being carried out on detectors to

improve their sensitivity. At the other site at Holmdel in New Jersey, only

®fty kilometres from Princeton, people were perfecting a horn antenna.

The geometrical form of such an antenna is particularly useful for the

detection of weak signals because they are largely able to cut out

`nuisance' radiation from behind. This was why such a horn with a 3 m

opening was constructed in 1961 for the detection of the weak signals

from ECHO.

A few years earlier the two radio astronomers Arno Penzias and Robert

Wilson had joined the laboratory. In fact they had a special interest in this

antenna. It was suf®ciently sensitive, once it had been equipped with an

appropriate detector, to observe astronomical sources of small angular

diameter. In fact, for sources of the right angular diameter for its beam, it

was the most sensitive radio telescope in existence. Because of its com-

pactness and excellent directivity it would be able to measure its gain

accurately and identify all possible sources of nuisance noise. It thus

presented the possibility of making absolute measurements rather than just

the differential measurements to which radio astronomers are usually

limited.

In 1963 the antenna lay unused and the two radio astronomers inherited

some of it. After being used for the ECHO satellite it had been adapted for

the TELSTAR satellite. To this end a MASER receiver operating at 7.3 cm,

that is at a frequency of 4.08 GHz, was installed, backed up by an ampli®-

cation stage. The task of the two radio astronomers was to transform the

instrument into a radio telescope and then calibrate it properly. In order to

make the most of its capabilities, they intended to use it for observations

requiring absolute ¯ux measurements, observe regions of our Galaxy and

con®rm the spectra of a number of radio sources. In fact they expected

above all to show that no radiation came from the halo of our Galaxy at a

wavelength of around 7 cm. As a follow up they intended to construct a

receiver working at 21 cm and thus, amongst other things, study the

hydrogen present in clusters of galaxies.

One of the ®rst tasks of Penzias was to build a liquid helium cryostat to

replace the liquid nitrogen cryostat and so ensure the effective cooling of

the detector. From their very ®rst observations the two radio astronomers

noticed that they were registering a higher ¯ux than they had predicted.

Radio astronomers often express measured ¯uxes as temperatures. Penzias

and Wilson had recorded `temperatures' that were too high. So it was

necessary to work out the contributions from the sky, the antenna itself, the
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wave-guide and the various parts of the apparatus. This excess temperature

was not understood, but several explanations were still possible. First of all

it was possible that emission from the atmosphere at these wavelengths

might be stronger than had previously been thought. However, the lack of

any variation of the signal with direction appeared to rule out this explana-

tion. It was also possible that man-produced interference affected the

readings. In order to look at this possibility more closely, Penzias and

Wilson undertook to sweep the horizon with the antenna. The observations

excluded both this explanation and a possible origin from our Galaxy, the

Milky Way. The only other possibility was that discrete astronomical

sources were responsible, but, given the properties of the best known of

these, this seemed just as improbable.

All that remained was to check the radiation due to the antenna itself.

After a very detailed and accurate calculation they concluded that this

could not provide an explanation. In spring a couple of pigeons had

nested in the shelter provided by the antenna. Was it possible that this

might have caused some bizarre electromagnetic effect? They got rid of

the pigeons and carefully cleaned the antenna, but the problem remained.

Faced with these repeated failures, they were almost prepared to give up

all hope of obtaining absolute measurements of the halo of our Galaxy.

Nevertheless, one day they happened to speak with an astrophysicist

colleague (B. Burke) who had heard others mention a background

radiation. Jim Peebles, an astrophysicist at Princeton, had in fact per-

formed calculations that implied such predictions from big bang models.

Burke advised them to contact the Princeton group under Dicke. A

meeting was organised. The Princeton group con®rmed, somewhat dis-

appointedly, that they had arrived, albeit a bit late, at this conclusion and

understood the nature of the discovery. Two articles were sent jointly to

the Astrophysical Journal.

In fact Penzias and Wilson initially were not really interested in cosmo-

logy. The Princeton group, on the other hand, had expected such observa-

tions to be made. Robert Dicke, its director, and Jim Peebles had carried

out calculations showing that, because of its expansion, the universe should

be ®lled with such radiation1. Two of their colleagues, Peter Roll and David

Wilkinson, had begun to design a radiometer capable of measuring it.

Already for several months the group had been dedicating itself to building

what was later to be called `Dicke's Radiometer' in order to measure the

1 In fact these calculations had been performed in the framework of an oscillating universe, in
which cycles of collapse, rebounding and renewed expansion took place.

1.1 The discovery of the CMBR 3



cosmological (microwave) background radiation. (Henceforth we shall use

the abbreviation CMBR for the cosmological microwave background

radiation.) Although the Princeton group was not aware of it at that time,

the existence of this radiation had been predicted long before. Alpher and

Herman, the collaborators of George Gamow, had in 1949 predicted its

existence at a temperature of a few degrees Kelvin. The USSR astrophysi-

cists Doroshkevich and Novikov had also independently predicted its

existence in 1964.

After the con®rmation of the discovery the Princeton group began an

observational study of this background radiation. In 1965 Roll and Wilkin-

son carried out measurements at wavelength ë � 3 cm. This measurement

gave some idea of the spectrum of the radiation. Its thermal nature which

had been predicted by the big bang model seemed to con®rm the model.

The temperature was estimated to be 3:0� 0:5 K. Subsequently other

measurements con®rmed its thermal nature and by the middle of 1966 the

spectrum from 2.6 mm to 21 cm had been established.

Moreover the radiation had been detected much earlier, around 1940, by

two American astronomers, Adams and Dunham, at the Mount Wilson

Observatory, although they had not recognised it as such. They had

discovered weak interstellar emission lines which were later identi®ed with

CH, CH� and CN molecules. The radiation was produced by excited

molecules and the temperature had been estimated by 1941 to be around

2.3 K (ë � 2:64 mm; see section 7.5). Shortly after the 1965 observations

several authors realised that these molecules were in fact excited by

photons from the CMBR. These results not only con®rmed the existence of

the radiation but also provided a measurement at another wavelength. They

thus further con®rmed that the radiation's spectrum followed a black-body

curve.

1.2 The origin of the background radiation

There are two very important characteristics of this radiation ®lling the

entire universe: on the one hand its perfect isotropy (it has the same

properties, most importantly its intensity, in every direction in the sky); and

on the other hand its distribution in terms of wavelength, or in other words

its spectrum, obeys extremely accurately what physicists call the black-

body law. As far as we know at present, only thermal processes, that is

processes produced by a system in thermal equilibrium, are capable of

producing such radiation. On the other hand the isotropy strongly indicates

that the processes involve the universe as a whole. The only way to
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understand the origin of such a phenomenon is to suppose that the entire

universe went through a phase in which matter and electromagnetic

radiation were in thermal equilibrium. This is precisely what Gamow and

his collaborators had predicted around 1940. The Princeton group had

made a similar prediction just before 1965. For both it was of prime

importance to explain the relative abundances of the chemical elements in

the universe as a whole within the framework of the newly formulated big

bang model.

By big bang we shall mean a scenario in which the universe passed

through an extremely hot and dense primordial phase. This does not

necessarily imply an initial singularity2, `birth' or `creation' of the uni-

verse3.

The originality of these models stems from the idea that the primordial

universe was suf®ciently dense and hot for almost its entire contents to be

in thermodynamic equilibrium (in a suf®ciently distant past). In this case

the laws of thermodynamics or, more precisely, the laws of quantum

statistics allow one to calculate the characteristics of the various popula-

tions of particles and quanta present. Thus electromagnetic radiation

behaved as black-body radiation since at this time the universe itself

behaved as a black body.

It is a long time since the universe was in thermal equilibrium. One of

the main occurrences marking the end of this coupling between matter and

radiation goes by the name recombination. It took place about 15 thousand

million years ago, about half a million years after the beginning of our

phase of expansion, which is somewhat incorrectly called the `birth of the

universe'. (The exact times depend on the particular cosmological model

adopted.)

Before recombination matter was ionised and the electrons were free

and very numerous. The photon density was very high. Frequent collisions

between photons and electrons ensured complete equilibrium of matter and

radiation. Because of this the universe was opaque and any information

carried by a photon was rapidly lost during the continual scatterings with

the free electrons. As a result, this optical and radio astronomy can reveal

nothing whatsoever about this period. The CMBR dates from the epoch of

recombination, that is from the time when the universe became transparent.

2 The possible avoidance of an initial singularity was extensively discussed in `Self-consistent
cosmology, the in¯ationary universe, and all that . . .' (Gunzig E. & Nardone P., Fundamentals
of Cosmic Physics, 1987, vol. 11, pp. 311±443).
3 For the possible avoidance of an initial singularity see, for example, Cosmology, A First
Course, by Marc LachieÁze-Rey, Cambridge University Press.
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Because of this fact it provides us with the earliest information that we can

hope to receive about the universe, at least in the form of electromagnetic

radiation. It can reveal to us the state of the universe in its earliest stages,

stages described by the big bang model.

6 Introduction


