
P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

CB539-FM CB539-Coombs CB539-Coombs-v3.cls January 23, 2003 11:35 Char Count= 0

IT PROJECT ESTIMATION

A PRACTICAL GUIDE TO THE

COSTING OF SOFTWARE

PAUL COOMBS
London

iii



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

CB539-FM CB539-Coombs CB539-Coombs-v3.cls January 23, 2003 11:35 Char Count= 0

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Paul Coombs 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typefaces 10.75/13.5 pt. Berkeley Oldstyle and Franklin Gothic System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Coombs, Paul.

IT project estimation : a practical guide to the costing of software / Paul Coombs.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-53285-X (pbk.)

1. Computer software – Costs. I. Title.

QA.76.76.C73 C66 2003
005.3 – dc21 2002191142

ISBN 0 521 53285 x paperback

iv



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

CB539-FM CB539-Coombs CB539-Coombs-v3.cls January 23, 2003 11:35 Char Count= 0

Contents

Chapter 1
Introduction 1

Are You Estimid? 1
Why Are Estimates So Bad? 2
Why Estimate? 5
Is Estimation Possible? 8
What’s Wrong with Overestimation? 9
Who Should Do the Estimates? 10
When Can an Estimate Be Provided? 10
Where Do You Start? 11
What Is Contingency? 13

Chapter 2
Listing the Tasks 16

My Secret Method 16
Familiarisation with the Project 17
The Estimatable Entities 18
Tasks Easily Forgotten 20
Component-Based Development and Reuse 22
Packaged Software 22
Iterative Development Methods 23
The Cost Model Template 25
The Task List 27

vii



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

CB539-FM CB539-Coombs CB539-Coombs-v3.cls January 23, 2003 11:35 Char Count= 0

viii Contents

Chapter 3
Estimating Each Task 29

Components of a Technical Task 29
Collating Your Assumptions 30
Estimating the Task Contingency 31
Estimation Techniques 33
Estimation by Feel 34
Estimation from a Baseline Task 35
Function Point Analysis 37
COCOMO 42
Commercially Available Tools 50
Do-It-Yourself Function Point Analysis 52

Chapter 4
Planning the Project 56

How Long Will the Project Last? 56
The Task Plan 59
Task and Resource Dependencies 61
Overhead Tasks 65
Revising the Model 70

Chapter 5
Analysing the Risks 72

Evaluating Project-Wide Assumptions 72
Assessing Each Risk 74
Common Risks 76
Penalties, Damages, and Bonds 79
Allowances for Positive Factors 80
Building the Contingency into the Plan 82
Increasing the Task Estimates 82
Where Does the Contingency Disappear? 84
Buffering the Contingency 87
Compounding the Contingency 90



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

CB539-FM CB539-Coombs CB539-Coombs-v3.cls January 23, 2003 11:35 Char Count= 0

Contents ix

Chapter 6
Costing the Project 92

Staff Costs 92
Capital Costs 96
Ongoing Costs 101
Cost Summary 102
Cashflow 103
Price Breakdown 104
Visualising the Model 105

Chapter 7
Reviewing the Estimates 107

Tidying Up 107
Types of Review 108
Signoff 110

Chapter 8
Maintaining the Model 111

Why Bother? 111
Problems with Progress Reporting 112
Earned Value Management 113
Tracking Iterative Projects 119
Tracking the Critical Chain 121

Chapter 9
Evaluating Success 124

Reviewing the Project 124
Collecting Statistics 126



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

CB539-FM CB539-Coombs CB539-Coombs-v3.cls January 23, 2003 11:35 Char Count= 0

x Contents

Chapter 10
Case Study 128

Project Summary 128
Technical Tasks 130
Overhead Tasks 133
Risk Analysis 136
Task Plan 137
Staff Costs 139
Capital Costs 141
Summary 144
Cashflow 144
Diagrams 145
Estimation Effort 146

Chapter 11
The Cost Model Template 147

Installation Instructions 147
Licence Terms and Conditions 148
Disclaimer of Warranty 149
Updates to the Template 149
Using the Template 149

Chapter 12
References and Resources 158

Project Failure Surveys 158
IT Project Estimation in General 158
Function Point Analysis 159
Parametric Models and COCOMO 160
Commercially Available Tools 161
Risk and Contingency Management 161
Reviews 162
Project Management 162
On-Line Bibliographies 162
Others 163

Index 165



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

CHAPTER 1

Introduction

For which of you, intending to build a tower, sitteth not down first, and
counteth the cost, whether he have sufficient to finish it? Lest haply,
after he hath laid the foundation, and is not able to finish it, all that
behold it begin to mock him, saying, This man began to build, and was
not able to finish.

—Luke 14:28–30

ARE YOU ESTIMID?

No one wants to do the estimates. It is the most thankless task our industry can
impose—an enormous responsibility for a difficult and highly speculative job.
An unsuccessful estimate can result in long hours for the project team; sticky
explanations to managers and customers; and, above all, enormous financial
loss. If a project loses a million dollars, it might take ten million dollars worth
of successful work to regain the break-even point. Everybody remembers the
name of the person who costed a disaster, but no one ever recalls the genius
whose prediction was correct to the day, for success will be attributed to the
abilities and dedication of the development team. If you want glory: don’t do
the estimates.

So there is an understandable reluctance for anybody ever to provide any
estimates. Most people will vacillate; delegate; or even, as a last resort, flatly
refuse to provide a credible set of figures with their name appended. I call this

1



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

2 INTRODUCTION

attitude estimidity. In this book, I discuss how estimidity is revealed and how
it can be overcome. My aim is not to define some algorithmic method to obtain
reliable estimates—indeed, it is my belief that no such method exists or will
ever exist. Instead, my goal is to make you feel good about your own estimates
by ensuring that they are the best that could be done at the time.

Bad estimates mean that good projects don’t start, but land us with the impos-
sible ones. So banish estimidity and tackle the task with thought and method
to the best of your ability. No one can ask for more than that.

WHY ARE ESTIMATES SO BAD?

When I told some friends—all well-seasoned project managers—that I was
writing this book, I was treated with some scepticism. “Things take as long as
they take” was the general view. “All IT projects go over budget—it’s just their
nature.” My friends all have plans, timetables, risk analyses, change control
procedures, and the other manifestations of a well-managed project in place,
but are cheerfully resigned to exceeding its estimated time and budget and to
limiting the amount of the proposed functionality to be implemented.

They are not alone. The 2001 British Computer Society (BCS) Review re-
vealed that of 1,027 projects surveyed, only 130 were successful—success being
defined as delivering everything specified, to the quality agreed on, and within
the time and costs laid out at the start. Of 500 development projects (rather than
maintenance or data conversion), only 3 succeeded. In the United Kingdom,
many recent public-sector IT ventures have ended as high-profile fiascos, but
the story is similar in the private sector, in the United States, and in the rest of
the world (see Chapter 12, “References and Resources”, for more surveys).

Is all this down to poor estimation? We can divide the failures into two
classes. Firstly, there are those where the rot had set in before the project even
began—usually because it never was the right thing to do in the first place.
Although this sad truth may emerge only midway through the development,
we can’t pin the failure onto bad estimation. But the second group are those
projects which could have succeeded, but where the initial estimates disregarded
the foreseeable risks. Most of the failure factors cited by project managers in the
BCS survey are risks that they neglected to budget for—uncontrolled changes,
unrealistic client expectations, open-ended third-party contracts, unexpected
data conversions, complex interfaces, and so on. If risk is not eliminated in
advance, it must be included in the budget. Instead, every time, the failure
factors were encountered as a total surprise, and the project was derailed.



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

Why Are Estimates So Bad? 3

Why do we keep on making the same mistakes? I believe it is because un-
derestimation is now expected and acceptable. If we costed projects properly,
for example by adding sufficient contingency to cover all the risks, pricing staff
at their real cost to the organisation, and including the running costs of the
completed system, then most would never start; they could not be justified. But
everyone wants new projects to start. Managers have revolutionary ideas; there
are business opportunities that can’t be missed; and, let’s face it, designing new
systems is far more interesting than maintaining the old. And as for asking some
consultants, well, of course they think you should proceed—indeed, they will
often quote you a price below their cost, secure in the knowledge that there will
be sufficient changes to recoup the initial loss. The friends I mentioned earlier
started their projects knowing that success was unlikely, and possibly not even
expected, so they are not striving overmuch to achieve it. They see their job as
one of damage limitation.

Here’s some proof. Several years ago, I undertook an analysis of the fixed-
price projects undertaken by a large software house. The results are summarised
in Figure 1.1. Some of the projects made large profits, and some made large
losses, but most clustered around the break-even point. At first sight, this may
seem fine—the majority of projects completed for somewhere near the cost
estimated. But the Y scale is the profit, not the cost. The software house added a

Profit/Loss (%)

Size ($)10000 100,000 1,000,000 10,000,000

0

 5

160

10

80

20

40

40

20

80

10

160

 5

+

-

FIGURE 1.1. Analysis of Fixed-Price Projects



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

4 INTRODUCTION

mark-up and a contingency allowance in order to derive the fixed price quoted
to the customer. So the chart shows that most of these projects ate all the time
estimated, ate all their contingency allowance, and finally ate all the potential
profit before stopping. What has applied is a corollary to Parkinson’s Law:
The work has contracted to fit the budget available. How? By reducing the
functionality, the quality, or both. As the bottom of the pot was reached, the
more accurate the cuts became, so each project eventually delivered something
just about acceptable for the price.

There are many conclusions we can draw from this chart. “Stop doing fixed-
price projects” is one, for there seems to be no profit in them. And “don’t bother
with estimates” is another, for it appears that most projects will deliver some-
thing, regardless of the allocated budget. But what the chart really demonstrates
are the points I have already made—most projects are underestimated to start
with, insufficient allowance is made for predicable risks, and the only option
left to project managers is to take an axe to the requirements. Underestimation
may not explain every outcome, but if all the dots on the chart were raised
upwards by a few notches, the software house would be undertaking work
that yielded a consistent and predictable profit, and their customers would re-
ceive the functionality and quality they specified. Accurate estimates get us
what we all want, but over-optimistic figures dreamed up to make a sale, to
force through a pet idea, or to meet artificial delivery targets eventually lead to
compromise.

Many years ago, I watched as a nuclear power station was constructed in one
of my favourite parts of the countryside. The project was meticulously planned.
The team did not dig a huge hole in the ground and then say, “Hmm, what shall
we do now? Nuclear, gas, or coal-fired? Pressurised water or gas-cooled?” No—
only software engineers work like that. “Let’s build the easiest, cheapest, flashy,
interesting, beneficial, cost-effective, or quickest bit first” has come the cry from
a thousand different projects, “and we’ll worry about the rest later.” I have lost
count of the times I have costed a system “properly” only to have that figure
butchered in order to justify commencement. How often have we started on
“phase one of phase one”—a project yielding no business benefit in itself, but
one that allows us to make a start on a larger initiative for a low cost? And how
many times have we then found that because that project yielded no benefit,
obtaining the funding for the next phase became impossible, and the initiative
flopped?

We need to get real. The purpose of an estimate is not to come up with a
price that will get the project off the ground. So let’s examine why we really
need to undertake this thankless task.



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

Why Estimate? 5

WHY ESTIMATE?

Estimates are needed for three principal reasons:

1. To justify a project—enabling the cost to be compared with the anticipated
benefits, and “what if” assessments to be undertaken in order to choose
between different technical, environmental, or functional options.

2. To act as the central element of software engineering practice—enforcing the
discipline to make the project succeed.

3. To improve the software production procedures—evaluating the effects of
process improvements.

I expand on each of these in turn.

Justifying the Project

I once undertook some work for a large organisation that initiated new busi-
ness process reengineering programmes after each management shake-up. No
justification was attempted—the organisation did not maintain the underlying
figures to allow costs or benefits to be assessed. Instead, the gut feel of the new
architect of change was sufficient. The initiative would potter along for a year
or two, and then the sheer volume of work, and the associated costs, would
suddenly become apparent. The programme would be halted and then renamed,
and soon there would be another management shake-up, allowing the cycle to
begin again. That organisation is now in crisis because it has not modernised
its business model, despite the expenditure of countless millions on projects
intended to do so. A familiar story, with a simple moral—estimation saves money.
In this case, it would have been difficult and expensive (the first time) to analyse
the costs and benefits of any proposed initiative, but well worthwhile in order
to save the money wasted on work that could not be justified.

For projects can only be justified if they are cost-effective and timely. If a
new system saves one million dollars a year but costs forty million dollars to
develop, it’s probably not going to be approved. If the software has to display the
election results or control a satellite, it better be finished on time or the entire
effort will be wasted. I can think of very few cases in history where a major
engineering development took place with no regard to cost or time. Even while
the Great Pyramid was being planned I’m sure that someone wanted to know
if the expense was justified and that they continued to question this while the



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

6 INTRODUCTION

effort mounted and the timescales lengthened. The business, organisational, and
technical environment will inevitably change as the project proceeds, so there
may be a point at which continuation is no longer worthwhile. By undertaking
an honest, unbiased estimate we can see if it is sensible even to begin, and if we
keep this view of the costs and benefits up to date, we can see if it is worthwhile
to carry on.

This book concentrates on costing. If you want to decide if your project
should or should not go ahead, or whether a change is justified, you also need
to evaluate the benefits. And you must be able to do that using a measure-
ment that is directly comparable with the cost: money. It may seem difficult to
estimate the cost of a software application, but estimating the benefits it brings in
cash terms is often even harder. How many more people will buy our product
if it has this extra feature? How many will stop using it if the feature is not
implemented? But there is no point in estimating the project cost to the nearest
cent if this is going to be compared with someone’s gut feel of the benefits.
Improvements to the costing of proposed projects must go hand-in-hand with
improvements in determining their benefits.

Engineering the Development

At the nuclear power station, the engineers did not complete the reactor and
then decide to order some fuel rods, which take three years to make. They didn’t
complete the roof first and then start on the walls. The work of the different
teams had to be synchronised, equipment and components had to arrive at the
anticipated time, and operational staff had to be trained and ready—just as for
most IT projects. If each of these parallel strands is not predicted and controlled,
the timescale will start to stretch, and the costs to rise.

Software development is an engineering task. Sometimes highly skilled and
motivated technical teams do manage to craft innovative systems with the min-
imum of process and planning, but the rest of us need a disciplined frame-
work within which we can make progress. This means establishing processes
for requirements management, change control, progress assessment, testing
methodology, and all the other elements of the development life cycle. Even if
incremental techniques are being used, there must be an engineering approach
within each cycle, or we end up with technical anarchy.

So where do estimates fit into the engineering paradigm? Everywhere. You
can’t manage what you don’t measure, and to measure something you must have
a standard to measure against. So at every stage of the project engineering life



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

Why Estimate? 7

cycle, from the vague concept to the post-mortem, an up-to-date model of the
anticipated time and cost is needed in order to direct the team and to inform
the customers. Without estimates, you do not have such a model. Its purpose
is not make the project finish any earlier but to allow everyone to see what has
happened, what is happening, and—most importantly—what is yet to happen.
We must start with an initial estimate—our model of the cost and timescale of
the project—calibrating and maintaining this as development proceeds and the
inevitable problems and changes are encountered.

For during software engineering projects, it is taken for granted that serious
changes to the functionality can be introduced at any stage, while still main-
taining the same timescale. Civil engineers would not alter a bridge design
from suspension to cantilever while halfway across, but IT project managers
are well used to changes just as fundamental. The British Computer Society
review found that 76.3 percent of project managers reported that they had
never seen an IT project delivered in accordance with its initial specifications.
How do our designs get so out of control? Obviously, one reason is simply that
you can alter software specifications more readily than bridge blueprints. And
the environment into which IT systems are delivered changes more quickly
than the equivalent for bridges. But the most significant reason is that we so
rarely evaluate the cost of a proposed change or how much benefit it will
bring. Instead, we depend on someone’s gut feel that it is the right thing to
do. It is because it is possible to change IT projects so easily that we need
estimates. They give us some ammunition—some real facts—with which we
can evaluate whether a particular development, or a proposed modification, is
justified.

Improving the Process

Other engineering disciplines have managed to introduce predictability through
the sharing of experience, standardisation, and modelling. For example, al-
though some civil engineering projects (such as the Channel Tunnel) are unique,
high risk, and prone to overruns, most (such as apartment blocks and bridges)
are completed on time, within budget, and don’t keep falling down once de-
livered. But software engineering projects all seem to be of the overrunning,
falling-down-afterwards type. We should be getting better, utilising component-
based and off-the-shelf solutions, but we still seem to come up against the same
old difficulties, both technical (e.g., communications, integration, and testing)
and organisational (e.g., customer expectations, change management, and third



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

8 INTRODUCTION

parties). And we never learn. If an aircraft crashes or a bridge collapses, there
is an investigation, a report, and the whole industry learns a lesson. Software
engineering disasters are just written off, explained away, and then ignored.

We need to come out of denial. By measuring how long a project takes, com-
paring this against the original estimates, and analysing the differences, we will
improve our techniques for estimation. And we can then see, in a tangible form,
the results of using new tools and methods. Every organisation needs metrics
in order to assess how well they are doing against expectations. In an organisa-
tion where IT projects play an important role, the metrics associated with those
projects are particularly essential. So collect them. You will then have the tools
to improve the predictability of IT initiatives, while your competitors will con-
tinue to cover up the disasters, ignore the lessons, and repeat the same mistakes.

IS ESTIMATION POSSIBLE?

There are twelve Blindingly Obvious Rules of Estimation defined in this book.
I have called them that because they are not rocket science, not precise results
from years of academic research, and not even truths only someone as experi-
enced as myself could have realised. They are rules we all know. Of the twelve,
Rule 1 is not only the first but also the most fundamental.

Blindingly Obvious Rule of Estimation Number 1
Your estimate will be wrong.

How can it be otherwise? You are being asked to predict the future. And it
is not the future of something with so limited a count of contributory factors
and end results as a horse race. It is an IT project—an undertaking that may
encounter any number of events that will affect its progress, change its scope,
and challenge its entire reason for being. No one can foresee what will happen
to such a beast.

Even if you implemented the same project several times over, it would take
a different course each time. So, when you think about it, the project duration
is not a fixed number but a statistical entity, as shown in Figure 1.2. There is a
minimum time the project could possibly take, which is why the standard bell
curve is skewed. But there are so many events that may happen along the way
that we could never predict the maximum duration. So estimation—or at least



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

What’s Wrong with Overestimation? 9

Minimum possible time 

Frequency

Duration

FIGURE 1.2. Frequency of Possible Project Durations

100 percent accurate estimation—is not possible. You could pick a number and
be lucky, but in a parallel universe, fate would take a different course and that
number would be wrong.

Despite this, we can use our best judgment, taking into account every fact and
every doubt we have, to produce the most likely figure that can be predicted at
the time. But don’t ever convince your management, your customers, or yourself
that this number is going to be precise to the day or to the dollar.

WHAT’S WRONG WITH OVERESTIMATION?

Estimidity encourages the belief that it is never wrong to overestimate. But this
pretty much guarantees that new projects will never start or, in a commercial
environment, that you will never win any new work. It may not be your decision
to withhold the go-ahead, but if you have padded the estimates just to protect
your back then you will bear responsibility for the failure to achieve the benefits
that the project could have delivered.

In IT’s early days, the management of large software projects was somewhat
hit-and-miss because the drivers behind success or failure were unknown and
unpredictable. Overestimation was common, because profitability could still be
achieved even if there was time to draw a few “Snoopy” calendars along the way.
Today’s world is more competitive, and organisations can no longer afford to
finance projects that will easily run to time and budget. So we need precision
in our estimates, not just the figure for which we can say, “it can’t possibly take
longer than that.”



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

10 INTRODUCTION

WHO SHOULD DO THE ESTIMATES?

The best people to undertake the estimates are the ones who are going to un-
dertake the work. Clearly, they must have some relevant experience or they are
going to have no baseline with which to compare the new project. Conversely,
there can be no role for a “professional estimator” because the technical expe-
rience of such a person would soon become so out-of-date as to be worthless.
I undertake many estimates, but I have to match that task with substantive
project work, or else by now I would be mapping mainframe/dumb terminal
assumptions onto server/browser applications.

So the ideal estimator is the project manager or technical manager who
has been nominated for the work in hand. He or she may draw on specific
experience from the proposed team—the developers who will actually be doing
the work—but someone is needed to collate the results and take responsibility
for the total. If there are projects with which this one can be validly compared,
some expertise in the application area, or any familiarity with the technology
to be used, the relevant people need to be brought into the estimation team or
made available for consultation.

Where the professional estimator is useful is in the promotion of consis-
tent technique. If everyone in your organisation has their own secret way of
deriving estimates, and these are never questioned or the outcome validated,
you will never get any better at sizing new projects. The methodology must be
open, consistent, subject to challenge at a review, and calibrated at the end of
each project. Someone needs to make sure that this is the case; in larger or-
ganisations this is a full-time role for someone within the software engineering
function.

WHEN CAN AN ESTIMATE BE PROVIDED?

A few years ago, while I was working in a software house, I was passed in the
corridor by a senior manager. “How long do you think it would take to do a C++
compiler?” he asked by way of greeting. I gave a number of person-years, and
we passed without a further word. I don’t know why he wanted this number,
and probably never will. The point is that he probably didn’t know if such
a project would take one or one thousand years. He could have been on his
way to a meeting where that lack of knowledge could have made both him
and our company look so inept as to be unemployable. Many people would
not have given that manager a straight answer to his query, and I can see why.



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

Where Do You Start? 11

“What machine?”, “Where?”, “What version of C++?”, and “What have we
got to start with?” are just some of the questions I could have asked, and so
wriggled out. But that was not an option; my manager wanted a number that
minute. Not to have provided one would be estimidity in action. So we come to
Rule 2.

Blindingly Obvious Rule of Estimation Number 2
You can always provide an estimate.

I don’t care if there are hundreds of things about the project that you don’t
know (e.g., what it does, what the performance requirements are, what the
platform is, what methodology you’re using, what the language is, or what
level of testing is needed), it is always possible to come up with some number,
regardless of the number of caveats you may care to set with it.

Army privates have a saying that there is no greater danger than an officer
with a map; I have that same feeling about managers and estimates. We all know
that your number will be cast in stone, and the caveats will be forgotten. Such
is life. You may argue that a figure plucked from the air has no validity—a guess
is not an estimate. But my manager chose me to help with his problem because
he knew that I had the experience to provide an estimate of sufficient accuracy
for his purpose. To evade such a responsibility under a smokescreen of excuses
would not help anyone.

WHERE DO YOU START?

Techniques for estimation fall into four categories:

1. Expert Judgment—Consult with one or more experts, who use their expe-
rience to arrive at an estimate.

2. Analogy—Compare the proposed project with one or more completed sys-
tems, analysing similarities and differences in order to derive the estimate.

3. Bottom-Up—Decompose the work into its components, estimate each of
these individually, and then sum the results to obtain an overall figure.

4. Algorithmic—Use a mathematical model to derive the cost or timescale.
Input parameters define the unique characteristics of the project, and these
are fed into a set of equations in order to obtain an estimate.



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

12 INTRODUCTION

Expert judgment is fine, so long as you can find an expert whom you trust.
According to Delia Smith’s Complete Cookery Course, it should take me three
hours to make a steak-and-kidney pie. But does this mean I should start three
hours before my dinner party begins, or should I be building in factors unique to
my own situation—such as a lack of equipment, patience, and cooking ability?
So choose your expert well, and don’t accept his or her opinion unless it is
directly applicable to your own environment and methods of working. That
said, I would guess that the reason you are reading this book is that you are
supposed to be one of the experts. Maybe you can get some specialist help, but
you will also need some other techniques.

If I have made a chicken casserole several times before, I could conclude
that it would take around the same time to cook my steak-and-kidney pie.
Estimation by analogy is so psychologically appealing that it is tempting to
see all kinds of previous projects as having some degree of commonality with
the one proposed. But as the new project develops, the similarities fade away,
and the task manifests unique and troublesome characteristics of its own. For
my pie, I find that beef takes longer to cook than chicken, and making some
pastry turns out to be more difficult than it looks. We may say, “The XYZ
system took sixty person-years, and this one is pretty much the same, but with
different technology, a less experienced team, and a new application area—so
call it seventy person-years.” But this is not going to be very accurate. It may
do for a first pass, but could you then go on to detail all the differences and
estimate these individually in order to obtain more precision? This is not to say
that previous experience should be ignored. The more precedents and analogies
we can incorporate, the more accurate our estimate will be; later in this book I
show how this knowledge can be most effectively leveraged. But such expertise
is better applied at a lower level rather than to the estimate as a whole. Estimation
by analogy is fine for order-of-magnitude assessments, but only in cases where
the projects really are directly comparable.

That’s all I want to say about the first two categories of estimation technique;
the remainder of this book concentrates on the bottom-up and algorithmic
methods. But the best approach is a combination of all four. Assemble the most
experienced team you can, employ analogies to get a feel for the overall problem,
use the bottom-up technique to increase the accuracy, and deploy algorithmic
tools if you think they will help to confirm the result. Above all, don’t try to
economise by using unqualified people, allowing insufficient time, prejudging
the result, or failing to build on your previous experience. The penalties of
inaccurate estimation are so high that it is worth an investment to get the best
result possible.



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

What Is Contingency? 13

WHAT IS CONTINGENCY?

The Dilemma

How long does it take you to get to work in the morning—from shutting your
front door to settling down in your office chair? Very few of us could state a fixed
time, say, forty-eight minutes. It would be forty-eight minutes if your car starts, if
you don’t forget your bus pass, if your train is on time, if you can find a space in
the traffic to cross the road, and if you are not abducted by aliens from the planet
Zog. So you could say it is “fifty-five minutes on average” or “usually somewhere
between forty-eight and sixty-five minutes.” In fact, there is no top limit; there
are factors—risks—that could ensure that you never reached work at all.

Now suppose I asked you to give me an estimate of how long it will take you to
get to work next Monday, and I will fine you a dollar for each minute you are out
either way. Clearly, “forty-eight minutes” is not a good answer, for you have to
take some account of the risks. On the other hand, you can’t assume that every
risk will occur, or you’ll end up owing me a lot of money should you happen
to arrive after forty-eight minutes. This is the dilemma of project estimation.
Determining a minimum figure is hard enough, but we also need to make an
allowance for the risks. If we make too little allowance then these hazards may
be encountered and the project will be late, but if we add too much then it may
not seem worthwhile to start the project at all.

So the existence of risk means that our estimate will always be uncertain. We
cannot ignore this uncertainty, but must embrace it within the estimation and
planning process. This is Rule 3.

Blindingly Obvious Rule of Estimation Number 3
Every estimate must have a contingency allowance.

An estimate consists of two figures, the base and the contingency. They are
as inseparable as the x and y values in a pair of coordinates. The contingency is
an estimate in itself, of the amount of trust that that you are placing in the base
value. This is not the same as a degree of tolerance, the way a 100-� resistor
may be ±1 percent. The resistor may be 99-�, but a task estimated at twenty
days with 50 percent contingency is never going to take ten days. What that
pair of figures says is that the task will take at least twenty days, and the best
allowance to make is thirty days.



P1: FHA

CB539-01 CB539-Coombs CB539-Coombs-v3.cls January 7, 2003 9:48 Char Count= 0

14 INTRODUCTION

Separating Risk from the Base Value

Some people have more risky journeys to work than others. If you live nearby
and walk in, your estimate for next Monday may be ten minutes plus two
minutes’ contingency. Or you may take several trains and be highly dependent
on whether you make the connections—maybe forty-five minutes plus thirty
minutes’ contingency. Similarly, some projects are more risky than others. We
may have undertaken a similar development many times before and therefore
have a procedure for pretty much everything that could happen. Or we may
be venturing into the unknown, not really understanding either the problem or
the solution. The point is that the risk is reflected only in the contingency, not the
base value. The latter reflects how long we think things will take if everything
goes well, and the contingency is the allowance we will make for the untoward.

Separating the base value from the contingency actually makes the estimation
process easier. It’s still hard, mind you, but it does mean that we can determine
our base value without needing to take account of all the bad things that may
happen, and also that we can use some risk analysis techniques to determine
the right level of contingency.

The Sweet Spot

That “right level” is dependent on the amount of risk you wish to take. Remem-
ber that the estimate is a statistical value—a point on the bell curve of possible

Too Risky Just Right Too Cautious

Risk

Duration

FIGURE 1.3. Estimates Incorporating Differing Levels of Risk


