Contents

List of figures
List of tables
List of contributors
Acknowledgements
Abbreviations

1. Introduction
Paul T. Nicholson and Ian Shaw

Part I: Inorganic materials

2. Stone
Barbara G. Aston, James A. Harrell and Ian Shaw

3. Soil (including mud-brick architecture)
Barry Kemp

4. Painting materials
Lorna Lee and Stephen Quirke

5. Pottery
Janine D. Bourriaud, Paul T. Nicholson and Pamela J. Rose

6. Metals
Jack Ogden

7. Egyptian faience
Paul T. Nicholson with Edgar Peltenburg

8. Glass
Paul T. Nicholson [technology] and Julian Henderson [analysis]

Part II: Organic materials

9. Papyrus
Bridget Leach and John Tait

10. Basketry
Willemina Z. Wendrich

11. Textiles
Gillian Vogelsang-Eastwood

12. Leatherwork and skin products
Carol Van Driel-Murray

13. Ivory and related materials
Olga Krzyszowska [scientific analysis] and Robert Morkot [Egyptology]

14. Ostrich eggshells
Jack Phillips

15. Wood
Rowena Gale, Peter Gasson, Nigel Hepper [botany] and Geoffrey Killen [technology]

16. Mummification
A. Rosalie David

17. Oil, fat and wax
Margaret Serpico and Raymond White

18. Resins, amber and bitumen
Margaret Serpico with a contribution by Raymond White

19. Adhesives and binders
Richard Newman and Margaret Serpico

20. Hair
Joann Fletcher

Part III: Food technology

21. Cereal production and processing
Mary Anne Murray

22. Brewing and baking
Delwen Samuel

23. Viticulture and wine production
Mary Anne Murray with Neil Boulton and Carl Heron

24. Fruits, vegetables, pulses and condiments
Mary Anne Murray

25. Meat processing
Salima Ikram

Index
Figures

2.1 Map of Egypt from (a) Luxor to the Mediterranean and (b) Kerma to Luxor, showing locations of the known ancient hard-stone and soft-stone quarries. 8–9

2.2 Map of Egypt from (a) Luxor to the Mediterranean and (b) Kerma to Luxor, showing locations of quarries and probable ancient sources of gemstones. 10–11

2.3 Generalised geological map of the Aswan area, showing locations of the granite, quartzite and sandstone quarries. 16

2.4 The Eighteenth-Dynasty ‘unfinished obelisk’ in the quarry for coarse pink granite at Aswan (photograph courtesy of Jim Harrell). 17

2.5 Greco-Roman extraction marks in the quarry for coarse pink granite at Aswan (photograph courtesy of Jim Harrell). 17

2.6 Quartzite quarry at Gebel Gulab near Aswan, from which the nearby unfinished obelisk of Seti I was extracted (photograph courtesy of Jim Harrell). 17

2.7 Figure showing IUGS classification of plutonic rocks (after Streckeisen 1973). 21

2.8 Basalt quarry at Widan el-Faras in the Northern Fayum (photograph courtesy of Jim Harrell). 24

2.9 Pegmatitic diorite quarry in Wadi Umm Sheglat, Eastern Desert (photograph courtesy of Jim Harrell). 31

2.10 Part of the Gebel el-Asr gneiss quarries: the so-called ‘great’ or ‘chisel’ quarry is in the foreground (photograph courtesy of Jim Harrell). 33

2.11 Old Kingdom bowl carved from the lighter-coloured anorthosite gneiss with streaks and speckles (Ashmolean 1996–1908 E.401), Fourth Dynasty, from Mastaba A (Kaimenu) at Elkab (reproduced courtesy of the Ashmolean Museum, Oxford). 33

2.12 Tonalite gneiss quarry at Mons Claudianus, Eastern Desert (photograph courtesy of Jim Harrell). 35

2.13 Granodiorite statue of an official, Twelfth Dynasty, from Athribis (BM EA1237; photograph courtesy of the Trustees of the British Museum). 37

2.14 Limestone quarry in Wadi Zebeida near Amarna (photograph courtesy of Jim Harrell). 41

2.15 Pillars inside an underground limestone quarry at Qau el-Kebir (photograph courtesy of Jim Harrell). 41

2.16 Limestone quarries at Qau el-Kebir (photograph courtesy of Jim Harrell). 41

2.17 Limestone quarry at Beni Hasan (photograph courtesy of Jim Harrell). 41

2.18 Limestone quarry at el-Sawayta (photograph courtesy of Jim Harrell). 41

2.19 Limestone breccia statue of the hippopotamus-goddess Taweret, Late Period (BM EA35700; photograph courtesy of the Trustees of the British Museum). 43

2.20 Gebel Dokhan (Mons Porphyrites), Eastern Desert, with the southwest quarries and west quarries from which the purplish-red ‘imperial’ andesite-dacite porphyry was extracted (photograph courtesy of Jim Harrell). 48

2.21 Andesite porphyry vessel, late Predynastic or Early Dynastic period (BM EA35304; photograph courtesy of the Trustees of the British Museum). 48
2.22 Sandstone quarry on the east bank at Gebel el-Silsila (photograph courtesy of Jim Harrell). 54
2.23 Sandstone quarry at Nag el-Hoch (photograph courtesy of Jim Harrell). 54
2.24 Sandstone quarry at el-Mahamid (photograph courtesy of Jim Harrell). 55
2.25 Siltstone-greywacke quarry in Wadi Hammamat, Eastern Desert (photograph courtesy of Jim Harrell). 57
2.26 The main travertine quarry at Hatnub, Eastern Desert (photograph courtesy of Ian Shaw). 59
2.27 Travertine quarry in Wadi Gerrawi, Eastern Desert (photograph courtesy of Jim Harrell). 60
2.28 One of numerous small quarries for calcareous tuff and tuffaceous limestone on Gebel Manzal el-Seyl, Eastern Desert (photograph courtesy of Jim Harrell). 61
2.29 Turquoise mine at Serabit el-Khadim, Sinai, with a rock-cut stele of the Twelfth-Dynasty ruler Amenemhat III just above the entrance (photograph courtesy of Ian Shaw). 63
3.1 The relative proportions of clay, silt, and sand in samples of brick and soil from Amarna and East Karnak (after French 1981, 1984) (drawing by Barry Kemp). 66
3.2 Brick data from three buildings of Amenhotep III: sites E and K at Malkata, and Kom el-‘Abd to the south of these (based on a study by John McDonald for the University Museum of Pennsylvania) (drawing by Barry Kemp). 81
3.3 Point scatter of sample brick sizes from the Early Dynastic period, Middle Kingdom and Late Period. Each point represents average (or approximate) measurements (after Spencer 1979a: pl. 41).
3.4 The laying of bricks. (a) features of a mud-brick wall of the New Kingdom; (b) pattern of bricklaying to achieve the niched façade effect, Early Dynastic Period, Hierakonpolis (after Weeks 1971–2); (c) part of the enclosure wall of the North Riverside Palace at Amarna; (d) side wall of a buried portion of a ramp at Amarna (Kom el-Nana). (c) and (d) are reproduced by permission of the Committee of the Egypt Exploration Society. 89
3.5 A common method of making the steps of a staircase was to use bricks laid on their edge, as at the Ramesseum (after Thorel 1976: 50). 90
3.6 Section of niched ‘palace-façade’ brickwork at First Dynasty tomb 3507 at Saqqara (reproduced by permission of the Committee of the Egypt Exploration Society). 91
3.7 Niched brickwork on the Second-Dynasty ‘funerary palace’ at Abydos, the Shunet el-Zebib. 91
3.8 Uses of spread mud layers. (a) in a boat slipway at Mirgissa, Nubia (after Vercoutter 1970); (b) as a roof covering in a reconstruction of roof design at Amenhotep III’s palace at Malkata, site E, square af21 (1973 excavations of the University Museum of Pennsylvania). 94
3.9 Brick vaults and domes. (a) the earliest example, which covers a subsidiary burial at Saqqara tomb 3500, First Dynasty (after Emery 1958); (b) brick vaulting at the Ramesseum with alternate pitching for double or multiple vault layers (after Thorel 1976); (c) a detail of the same, showing the grooved surfaces of the vaulting bricks; (d) domed brick chapel at the Fourth Dynasty tomb of Seneb at Giza (after Junker 1941). 95
3.10 Brick vaulting at the magazines beside the temple of Seti I at Abydos. 96
3.11 Architectural mouldings in mud. (a) ribbed vaulted roof in a Fourth Dynasty chapel at Giza which used specially moulded bricks (after Fisher 1924); (b) moulded mud panels fixed to a Third Dynasty tomb façade (no. 3070) at Saqqara by wooden pins (after Emery 1968); (c) archers’ loopholes in the fortress wall at Buhen, Twelfth Dynasty (after Emery et al. 1979); (d) composite column from building R41.5 at Amarna (drawing by Ralph Lavers, reproduced by permission of the Committee of the Egypt Exploration Society); (e) parapet
moulding for an ornamental pool at Maru-Aten, Amarna (after Peet and Woolley 1923: 119, fig. 19, pl. XXXVII); (f) and (g) cornice mouldings from Deir el-Medina (after Bruyère 1926).

3.12 Part of the lower ramparts of the Twelfth-Dynasty fortress atMirgissa, Nubia (reproduced from Vercoutter 1970, pl. VIIIb).

3.13 New Kingdom and Late Period ramparts. (a) section through the enclosure wall at Medinet Habu (after Hölscher 1951); (b) sketch of preserved brick crenellations at the Late Period fortress on Dorginarti Island, Nubia (after Knudstad 1966: pl. XXIVa); (c) plan of one course of bricks and timber beams in the enclosure wall of the Montu temple at Karnak (after Christophe 1951: pl. VI); (d) plan of the foundation brickwork at the north corner of the Montu temple at Karnak, built over earlier constructions (after Christophe 1951: pls. XVI, XVII); (e) reconstruction of the centre of the east side of the Thirtieth-Dynasty enclosure wall at the Amun temple at Karnak (after Golvin and Hegazy 1993).

3.14 Cellular brick foundation platform for the Palace of Apries at Memphis, viewed to the north. The cellular chambers were originally domed.

3.15 A section of the Late Period pan-bedded enclosure wall at the Kom el-Sultan, Abydos, built over house walls of the Old Kingdom.

5.1 Handle of New Kingdom amphora from Memphis (photograph by P.T. Nicholson, reproduced by courtesy of the Egypt Exploration Society).


5.3 Potter from the Fifth-Dynasty tomb of Ty at Saqqara (drawing by U. Gerner after photograph).

5.4 Middle Kingdom flask from Diospolis Parva (Fitzwilliam Museum, E.83.1899, drawing by W. Schenck with the original published drawing for comparison).

5.5 Fabric description sheet, filled in for the example of Nile B2 (photographed in Figure 5.6a). Eighteenth Dynasty, from Memphis.

5.6 Sherd breaks photographed through the microscope: (a) Nile B2 × 20 magnification, described in Figure 5.5. (b) Marl D × 30 magnification. Both from Memphis. (photograph courtesy of J.D. Bourriau).

5.7 Photographs of thin-sections: (a) Nile B2 from Memphis. Taken under PPL. (b) Marl D from Memphis. Taken under XPL (Bourriau and Nicholson 1992: colour pl. 3a).

5.8 Compositional data: twenty-two elemental concentrations for 150 samples of Nile silt fabrics and 193 samples of Marl clay fabrics (from Bellido et al. forthcoming).

5.9 Dendrogram showing results of XRF analysis of pottery from ‘Ayn Asil (after Ballet and Picon 1990: Figure 38. Reproduced with permission).

6.1 Scenes from the Theban tomb of the Eighteenth-Dynasty vizier Rekhmira (TT100), showing metalworking, including the casting of two bronze doors (after Davies 1943: plate 52).

6.2 Scenes from the Theban tomb of Puyemra (TT39), showing metalworking (after Pusch 1990: fig. 10b).

6.3 Plan of the cross-shaped smelting area at the Delta site of Qantir (after Pusch 1990: Abb. 2; drawing reproduced courtesy of excavation Qantir and J. Klang).

6.4 Scene of gold processing in the Ramesside tomb of Kha’y, ‘gold washer of the treasury of Pharaoh’, at Saqqara (after Martin 1991: fig. 90).

6.5 Reconstruction of the smelting process used by Ramesside metal-workers at the Delta site of Qantir (after Pusch 1990: Abb. 4; drawing reproduced courtesy of excavation Qantir and J. Klang).

7.1 A scene from the tomb of Ibi, chief steward of the divine adoratrice in the time of Psamtek I at Thebes (TT36; c. 664–610 BC) (after Davies 1902: pl. 23).

7.2 One of the kiln pits discovered in Locus 14 at Abydos by the excavations of the joint expedition of the University of Pennsylvania Museum, Yale University and the Institute of Fine Arts, New York University (see
7.3 One of the Locus 14 kiln pits at Abydos, after excavation (looking south – see Fig. 7.2) (photograph courtesy of University of Pennsylvania Museum and Matthew Adams).

7.4 Scanning electron microscope photograph of a section through ‘glassy faience’, from a Twenty-fifth or Twenty-sixth Dynasty shabti (BM EA34095) (photograph courtesy of M.S. Tite).

7.5 The three methods of faience glazing (after Vandiver 1983: A145).

7.6 Scanning electron microscope photograph of a section through faience glazed by efflorescence, from an Eighteenth-Dynasty vessel excavated at Amarna (Petrie Museum UC30153; photograph courtesy of the Petrie Museum of Egyptian Archaeology, University College London and M.S. Tite).

7.7 Scanning electron microscope photograph of a section through faience glazed by cementation, from a Twenty-first-Dynasty shabti (BM RL16323; photograph courtesy of M.S. Tite).

7.8 Scanning electron microscope photograph of a section through faience glazed by application, from a Late Period shabti (BM RL16322; photograph courtesy of M.S. Tite).


8.2 ‘Kiln 3’ at site O45.1, Amarna (reproduced courtesy of the Egypt Exploration Society).

8.3 Schematic cross section through the reconstructed furnace and schematic diagram showing the complicated pattern of brickwork in ‘kiln 3’ (drawing by Ian Dennis).

8.4 Making a glass vessel by the core forming process (drawing by Sal and Barbie Garfi).

8.5 Scanning electron microscope photograph of ‘Egyptian blue’ from a Roman mosaic of the second century AD (E-B14122; courtesy of the Trustees of the British Museum and Professor M.S. Tite).

8.6 Photomicrograph of calcium antimonate crystals in opaque white fourteenth-century BC Egyptian glass (magnification × 2500) (photograph courtesy of J. Henderson).

8.7 Photomicrograph of lead antimonate crystals in opaque yellow fourteenth-century BC Egyptian glass (magnification × 1000) (photograph courtesy of J. Henderson).

8.8 X-ray spectrum for an opaque white glass from Amarna showing X-ray peaks above background (drawing by J. Henderson).

8.9 X-ray spectrum for an opaque yellow glass from Amarna showing X-ray peaks above background (drawing by J. Henderson).

8.10 X-ray spectrum for an opaque blue glass from Amarna showing X-ray peaks above background (drawing by J. Henderson).

8.11 X-ray spectrum for a translucent blue glass from Amarna showing X-ray peaks above background (drawing by J. Henderson).

8.12 Schematic diagram (section) of an electron microprobe (drawing by J. Henderson).

8.13 A bivariate plot of weight percent of potassium oxide (K₂O) versus weight percent magnesia (MgO) in glass samples dating to between the fifteenth and twelfth centuries BC from Pella (Jordan), Tell Brak (Syria), Amarna (Egypt) and Minoan samples from Crete. The relative magnesia and potassium oxide levels of some glasses from Europe (of the eleventh to seventh centuries BC) are also plotted (drawing by J. Henderson).

9.1 The stems and flowerheads of papyrus plants (photograph courtesy of Bridget Leach).

9.2 Stages of papyrus manufacture (photograph courtesy of Bridget Leach).

9.3 Views of each end of the Greenfield Papyrus (BM EA10554: the papyrus of Nestanebitisheru, Third Intermediate Period; courtesy of the Trustees of The British Museum).

9.4 Scene of papyrus gathering from the tomb of Senbi’s son Ukh-hotep at Meir, Middle Kingdom (after Blackman 1915a: pls. 3–4).

9.5 The Papyrus of Nesmin (BM EA10188/14, Late Period; see Quirke
1993: 49); the sheet joins are visible when it is seen through transmitted light (reproduced courtesy of the Trustees of the British Museum).

9.6 A papyrus bearing a liturgy in hieratic (BM EA10819, Eighteenth Dynasty), which has been subjected to insect attack while rolled (reproduced courtesy of the Trustees of the British Museum).

9.7 ‘Made-up’ or ‘false’ papyrus rolls, some wrapped in linen (BM, unregistered; reproduced courtesy of the Trustees of the British Museum).

9.8 The Papyrus of Nesmin (BM EA10188/14, Late Period). Photograph taken in 1988, prior to conservation (reproduced courtesy of the Trustees of the British Museum).

9.9 Papyrus bearing Coffin Texts (BM EA0676/24, Middle Kingdom). Photograph (a) shows it inside a mount, which has developed a bloom on the inside of the glass. Photograph (b) shows it after the mount has been dismantled, with the bloom on the glass corresponding to the outline of the papyrus (reproduced courtesy of the Trustees of the British Museum).

10.1 Basketry techniques occurring in Egypt: (a) coiling, (b) weaving, (c) twining, (d) plaiting, (e) sewn plaits, (f) looping around a core (g) looping/knotless netting, (h) piercing/sewing, (i) binding.

10.2 Neolithic coiled basket from the Fayum (reproduced from Caton-Thompson and Gardner 1934: pl. xxix).

10.3 Construction drawing of the binding technique of the basketry coffin found at Tarkhan (displayed in room R/U11 of the Egyptian Museum, Cairo, unnumbered).

10.4 Weaving patterns occurring most frequently in ancient Egyptian furniture matting: tabbies and twills (drawing by W.Z. Wendrich).

10.5 Examples of twined basketry (drawing by W.Z. Wendrich).

10.6 Examples of coiled basketry (drawing by W.Z. Wendrich).

10.7 Mat-maker from the tomb of Khety in Beni Hasan (BH17) (drawing by A.M. Hense).

10.8 Representations of coiled basketry, twined basketry and other techniques (drawing by W.Z. Wendrich).

10.9 Painting from the Eighteenth-Dynasty Theban tomb-chapel of the vizier Rekhmira (TT 100), showing tribute from Nubia, including twined bags and coiled baskets decorated with coloured winders (after Davies 1943: pl. XLIII).

11.1 Model of a spinning and weaving workshop from the early Middle Kingdom tomb of Meketre (photograph courtesy of the Metropolitan Museum of Art, New York).

11.2 Scene showing the sowing of flax from the painted decoration of the Middle Kingdom tomb of Urnabu at Sheikh Sa‘id (tomb 25) (after Davies, 1901: pl. XVI).

11.3 Detail of a wall-painting in the tomb-chapel of Dagi at Thebes (TT103), showing the preliminary preparation of flax (after Davies 1913: pl. XXXVII).

11.4 Different methods of spinning, as represented in the wall-paintings of various Middle Kingdom and New Kingdom tomb-chapels.

11.5 Close-up of some fine, warp-faced cloth decorated with a band in red (madder) and blue (indigotin) (photograph courtesy of the Rijksmuseum van Oudheden, Leiden).

11.6 Warp-faced braids used on the side edges and lower edge of a tunic from the tomb of Tutankhamun (KV62) (photograph courtesy of the Griffith Institute, Oxford).

11.7 Bird’s eye view of a ground loom from the Middle Kingdom tomb of Khnumhotep, Beni Hasan (BH3; after Newberry 1893: pl. XXIX).

11.8 Detail of a painting depicting a vertical loom in the New Kingdom tomb-chapel of Thutnefer at Thebes (TT 104; after Davies 1929: fig.1, p. 234).

11.9 Remains of a beaded tunic (Carter no. 21d) found in the tomb of Tutankhamun (KV62) (photograph courtesy of the Griffith Institute, Oxford).

11.10 Close-up of appliqué and embroidery from a tunic panel, tomb of
11.11 Various seams and hems used in Pharaonic Egypt (after original drawings by G. Vogelsang-Eastwood). 283
11.12 A laundry scene depicted in the Middle Kingdom tomb of Khnumhotep at Beni Hasan (BH3) (after Newberry 1893: pl. XXIX). 284
11.13 Various ‘quality marks’ inscribed on Egyptian textiles of the Dynastic period, all five of which are in the Egyptian Museum, Cairo (after an original by G. Vogelsang-Eastwood). 285
11.14 A linen loincloth from a ‘rectangular gable-topped coffin’ at Deir el-Medina (reproduced from Carnarvon and Carter 1912: 83, pl. LXIX:1). 287
11.15 Leather loincloths from a New Kingdom box bearing the name of Maiherpri (reproduced from Carter 1903: 46–7). 287
11.16 Mummy wearing a V-necked dress of the sleeveless type (photograph courtesy of the Museum of Fine Arts, Boston). 288
11.17 Old Kingdom V-necked dress with sleeves, from Asyut (reproduced from Chassinat and Palanque 1911: pl. XXXIII). 289
11.18 Long tunic from the New Kingdom tomb of Kha at Deir el-Medina (TT8) (reproduced from Schiaparelli 1927: fig. 69). 289
11.19 Detail from a painted wall-relief in the Old Kingdom mastaba of Ptahhotep and Akhethotep at Saqqara, showing a hunter wearing a knotted cloak (after Davies 1900: pl. XVIII). 290
11.20 Bedding from the tomb of Kha (TT8) at Deir el-Medina (reproduced from Schiaparelli 1927: fig. 105). 291
11.21 Detail from a wall-painting in the Middle Kingdom tomb of Amenemhat at Beni Hasan (BH2), showing the use of a cloth grape-juice strainer (after Newberry 1893: pl. XII). 292
11.22 Shroud of Ahmose Meritamun, who was probably the wife of the early Eighteenth-Dynasty ruler Amenhotep I (Cairo, Egyptian Museum) (photograph courtesy of the Metropolitan Museum of Art, New York). 296
12.1 Old Kingdom butchery scenes: (a) Scene in the tomb-chapel of Pepyankh at Meir, showing the throat and belly of an antelope being cut, the skin loosened, and the right foreleg beginning to be cut off (after Blackman 1914–53: V, pl. XXXV). (b) Scene in the tomb-chapel of Usermener at Saqqara, showing the front leg and heart of the animal being carried away, and its hide hanging from its rib cage (after Murray 1904: pl. XXII). (c) Scene from the tomb of Ptahhotep at Saqqara, showing the slicing and pummelling of the animal’s hide after the removal of its legs (after Murray 1904: pl. XI) 301
12.2 Late Eighteenth- or early Nineteenth-Dynasty relief from Saqqara, showing the process of stretching and scraping of skins (Berlin, ÄM 19782; after Martin 1987: pl. 23, no. 68). 304
12.3 Multi-coloured sandal (BM EA36200; drawing by C. van Driel-Murray). 307
12.4 Diagramatic section detail of multi-coloured strips edging an artefact from Amarna (UC 35939; drawing by C. van Driel-Murray). 307
12.5 (a) Leather-covered clay cone (Petrie Museum UC 4369 and (b) stick wound round with rawhide (Petrie Museum UC 5058). 308
12.6 Characteristic elements of Roman-period water skins from Mons Claudianus (drawings Susan Winterbottom). 310
12.7 Six-segment red and yellow leather ball from el-Riqqa (Petrie Museum UC 31433) with segment pattern. 311
12.8 (a) A sandal (BM EA63216) and (b) a ‘milk pail’ (BM EA63223) both from Mostagedda (drawings by C. van Driel-Murray). 311
12.9 Leather artefact from Amarna (Berlin, ÄM). 311
12.10 Predynastic sandal from Gebelein with reconstructed cutting pattern (Turin, Museo Egizio; after Donadoni Roveri 1988: pl. 5). 312
12.11 Egyptian sandals (drawing by C. van Driel-Murray). 313
12.12 Basic patterns of Egyptian footwear (drawing by C. van Driel-Murray). 314
12.13 Green ankle boots with coloured figures xi
patterns and cut outs. Composite reconstruction based on BM EA4408/9 and Ashmolean E 2430 (drawing by C. van Driel-Murray).

12.14 ‘Ptolemaic’ red leather shoe with slit oval upper and eared sole (BM EA4402/3) (drawing by C. van Driel-Murray).

12.15 XRF scans of three different parts of an ankle-boot (Ashmolean E 2430).

13.1 Scene possibly depicting an ivory workshop in the Eighteenth-Dynasty Theban tomb-chapel of Menkheperraseneb (TT86) (after Davies and Davies 1933: pl. XI).

15.1 Flowering twig of acacia, *Acacia tortilis* subspecies *raddiana*, and a pod (drawing by N. Hepper).

15.2 Flowering shoot of silver birch, *Betula pendula*, with fruiting catkin (drawing by N. Hepper).

15.3 Leafy shoot of box tree, *Buxus sempervirens*, with male and female flowers (drawing by N. Hepper).

15.4 Carob, *Ceratonia siliqua*, A: leafy, flowering shoot; B: pod; C: seed (drawing by N. Hepper).

15.5 Flowering shoot of African black wood, *Dalbergia melanoxylon*, with a flower and two pods (drawing by N. Hepper).

15.6 Leafy shoot of sycomore, *Ficus sycomoras*, with inflorescence on stem, and longitudinal section of a fruit (drawing by N. Hepper).

15.7 Flowering and fruiting shoot of storax tree, *Liquidambar orientalis* (drawing by N. Hepper).


15.9 A: Leafy and flowering shoots of olive, *Olea europaea*; B: a flower; C: ripe fruit; D: longitudinal section of fruit showing stone (drawing by N. Hepper).

15.10 Almond, *Prunus dulcis*; A: flowering twig; B: leafy and fruiting shoot; C: the stone and D: the seed (drawing by N. Hepper).


15.12 Cilician fir, *Abies cilicica*, with male and female cones (drawing by N. Hepper).

15.13 Cedar of Lebanon, *Cedrus libani*, with mature cone (drawing by N. Hepper).

15.14 Italian cypress, *Cupressus sempervirens*, with scale-leaves, cones and a seed (drawing by N. Hepper).

15.15 Eastern savin, *Juniperus excelsa*, in fruit (drawing by N. Hepper).

15.16 Aleppo pine, *Pinus halepensis*, with cones (drawing by N. Hepper).

15.17 Scene of woodcutters from the Fourth-Dynasty tomb of Sekhemkara at Giza, LG 89 (after Hassan: 115, fig. 60).

15.18 Scene in the Sixth-Dynasty tomb of Iteti at Dishasha, showing craftsmen cleaving a tree trunk and other timber conversion processes (after Petrie 1898: pl. XXI).

15.19 Plywood construction on a coffin found in Gallery V under the eastern part of the Third-Dynasty Step Pyramid of Djoser at Saqqara (after Lauer 1933: 164).

15.20 Scene in the Middle Kingdom tomb of the nomarch Amenemhat at Beni Hasan (BH2), showing craftsmen steam-bending timber bows (after Newberry 1893: pl. XI).

15.21 Scene showing a carpenter turning wood on a lathe, from the early Ptolemaic tomb of Petosiris at Tuna el-Gebel (after Lefèbvre 1923: pl. X).

15.22 Fragment of a turned leg (BM EA2475) (photograph by Lorraine March-Killen).

15.23 Butt joint (drawing after an original by G. Killen).

15.24 Edge joint (tied) (drawing after an original by G. Killen).

15.25 Edge joint (loose tongue or tenon) (drawing after an original by G. Killen).

15.26 Edge joint (dowelled) (drawing after an original by G. Killen).

15.27 Coopered joint (drawing after an original by G. Killen).

15.28 Half-lap joint (rebated butt) (drawing after an original by G. Killen).

15.29 Housing joint (drawing after an original by G. Killen).

15.30 Pot stand triple halving joint (BM EA2471) (photograph by Lorraine March-Killen).

15.31 Bridle joint (drawing after an original by G. Killen).
15.32 Common through mortise and tenon joint with square shoulders (Ashmolean 1912.617) (photograph courtesy of Lorraine March-Killen). 362
15.33 Common through mortise and tenon joint with scribed shoulders (Manchester 5429) (photograph courtesy of Lorraine March-Killen). 362
15.34 Barefaced tenon with single shoulder (BM EA2479) (photograph courtesy of Lorraine March-Killen). 362
15.35 Chair stretcher joint with bareface tenon with single shoulder. (BM EA2479) (photograph courtesy of Lorraine March-Killen). 363
15.36 Stub tenon joint on chair back rest (BM EA2479) (photograph courtesy of Lorraine March-Killen). 363
15.37 Dovetail-shaped tenon joint (drawing after an original by G. Killen). 363
15.38 Dovetail joint (drawing after an original by G. Killen). 364
15.39 Lapped dovetail joint (drawing after an original by G. Killen). 364
15.40 Common through dovetail joint (drawing after an original by G. Killen). 364
15.41 Simple plain mitre joint (drawing after an original by G. Killen). 365
15.42 Shoulder mitre joint (drawing after an original by G. Killen). 365
15.43 Double shoulder mitre joint (drawing after an original by G. Killen). 365
15.44 Butt joint surmounting a long plain mitre (drawing after an original by G. Killen). 365
15.45 Half dovetail surmounting a long plain mitre (drawing after an original by G. Killen). 366
15.46 Common scarf joint with butterfly cramp locking piece (drawing after an original by G. Killen). 366
15.47 Tied hooked scarf joint (drawing after an original by G. Killen). 366
15.48 Spliced scarf joint (drawing after an original by G. Killen). 366
16.1 Dr Margaret Murray and colleagues unwrap one of the mummies known as the 'Two Brothers' in the Chemical Theatre, University of Manchester, in 1908 (photograph courtesy of the Manchester Museum, The University of Manchester). 372
16.2 Mummified detached head showing well-preserved skin tissue and remains of hair, eyelashes and beard (Manchester Museum). Ptolemaic Period, c. 200 BC (photograph courtesy of the Manchester Museum, The University of Manchester). 374
16.3 Wooden coffin for a mummified cat (Manchester Museum). Late period, c. 6oo BC (photograph courtesy of the Manchester Museum, The University of Manchester). 375
16.4 When X-rayed, one crocodile- shaped wrapping was found to contain four skulls (three shown here) rather than a complete crocodile (photograph courtesy of the Manchester Museum, The University of Manchester). 376
16.5 Lateral radiograph of the cartonnage face mask and the skull collapsed within, belonging to Mummy 1770. (Manchester Museum) (photograph courtesy of the Manchester Museum, The University of Manchester). 377
16.6 A mummy enters the CT Scanner in the Department of Diagnostic Radiology, University of Manchester, and the whole body is subjected to a transaxial sectional survey (photograph courtesy of the Manchester Museum, The University of Manchester). 377
16.7 Mummy 1770 was unwrapped and autopsied in 1975 by a multidisciplinary team at the University of Manchester (photograph courtesy of the Manchester Museum, The University of Manchester). 377
16.8 Completing the reconstruction of the head of the Leeds Mummy, Natsef-Amun. X-ray computer tomography enabled a polystyrene replica of this skull to be produced (photograph courtesy of the Manchester Museum, The University of Manchester). 378
16.9 Legs of Mummy 1770, revealed during unwrapping, showing amputations and prosthetic limbs inserted alongside the bones. 378
16.10 An endoscope has been introduced through the chest wall of a mummy to see whether or not the viscera packages are present (photograph courtesy of the Manchester Museum, The University of Manchester). 380
16.11 A photograph taken through a microscope to show a worm present in tissue taken from the groin of a
mummy (photograph courtesy of the Manchester Museum, The University of Manchester).

16.12 Section through the intestinal wall showing the remains of a parasitic worm. × 3,000.

16.13 Empty puparium of *Piophila casei* (photograph courtesy of the Manchester Museum, The University of Manchester).


17.1 Castor (*Ricinus communis* L.) (drawing by N. Hepper).

17.2 Balanos (*Balanites aegyptiaca* (L.) Del.) (drawing by N. Hepper).

17.3 Safflower (*Carthamus tinctorius* L.) (drawing by N. Hepper).

17.4 Moringa (*Moringa peregrina* (Forssk.) Fiori) (drawing by N. Hepper).

17.5 Linseed (*Linum usitatissimum* L.) (drawing by N. Hepper).

17.6 Sesame (*Sesamum indicum* L.) (drawing by N. Hepper).

17.7 Colocynth (*Citrullus colocynthis* (L.) Schrad.) (drawing by N. Hepper).

17.8 Nineteenth-century print showing oil being extracted by the process of wringing it out of a bag into a pottery vessel (after Amouretti 1986: 159).

17.9 Scene from the tomb of Rekhmira (TT 100) showing removal of honeycombs from the hive (after Davies 1943: pl. XLIX).

17.10 Molecular structure of a glycerol molecule and a triglyceride.

17.11 Structures of stearic and linoleic fatty acids.

17.12 IR spectra of modern oils, demonstrating their similarity.

17.13 Mass spectrum (electron impact mode 70 eV) of a component from a trans/thermolytically methylated sample taken from the contents of a New Kingdom one-handled pottery jar with painted decoration (BM EA4902). The component is identified as the methylester of stearic acid.

17.14 Total ion chromatogram of a trans/thermolytically methylated sample taken from the contents of a New Kingdom one-handled pottery jar with painted decoration (BM EA4902).

17.15 Mass spectrum of one of the components found on a sample of the contents of a late Eighteenth-Dynasty one-handled calcite cosmetic jar (BM EA24708[11]; part of the toilet box of Tutu). The component is identified as cholesterol.

17.16 IR spectrum of modern beeswax fragment (transmittance spectrum, infrared microscope).

17.17 Mass spectrum (electron impact mode 70 eV) of one of the components from a trans/thermolytically methylated sample taken from the black varnish coating of a *shabti* of Rameses IX (BM EA8571). The component is identified as methyl tetracosanoate (*C44*), indicative of beeswax.

18.1 *Pistacia lentiscus* L. (drawing by N. Hepper).

18.2 *Pistacia terebinthus* L. (drawing by N. Hepper).

18.3 *Cistus laurifolius* L. (drawing by N. Hepper).

18.4 Frankincense (*Boswellia sacra* Flueck.) (drawing by N. Hepper).

18.5 Myrrh (*Commiphora myrrha* (Nees) Engl.) (drawing by N. Hepper).

18.6 Galbanum (*Ferula galbaniflua* Boiss. and Buhse) (drawing by N. Hepper).

18.7 Molecular structures of some monoterpenes and monoterpenoids (after Mills and White 1994: 96, fig. 8.1).

18.8 Molecular structures of some of the abietane and pimaranediterpenoids found in conifer resins (after White 1994: 98, fig. 8.2).

18.9 Molecular structures of some labdane diterpenoids found in coniferous resins (after Mills and White 1994: 99, fig. 8.3).

18.10 Molecular structure of cis-abienol.

18.11 Molecular structures of triterpenoid components found in pistacia resin (after Mills and White 1994: 107, fig. 8.5).

18.12 Molecular structures of some triterpenoid components (after Mills and White 1994: 107, fig. 8.5).

18.13 Molecular structures of some triterpenoids found in myrrh (commic acids) and frankincense (boswellic acid derivatives).
18.14 Molecular structure of retene, found in some strongly heated ancient coniferous resins (after Mills and White 1994: 65).
18.15 Distribution of bitumenous deposits in Syria-Palestine (Map (a) after Forbes 1955: 2; map (b) after Nissenbaum 1978: 838, fig. 1).
18.16 Molecular structures of some components found in bitumen (after Mills and White 1994: 57, 58, 60, figs. 5.1–2).
18.17 Total ion chromatogram of a trans/thermolytically methylated sample from the contents of a Canaanite amphora from Tell el-Amarna. The components are indicative of pistacia resin.
18.18 Mass spectrum of methyl isomasticadienonate, the methyl ester of isomasticadienoic acid, characterised by base peak (B') at m/z 453 and molecular ion (M') at m/z 468. From a sample of yellow varnish on a Nineteenth-Dynasty polychrome shabti-box (BM EA24711).
18.19 Mass spectrum of methyl moronate, the methyl ester of moronic acid, characterised by base peak (B') at m/z 189 and molecular ion (M') at m/z 468. From a sample of yellow varnish on a New Kingdom polychrome painted 'dummy' pottery jar (Ashmolean 1955.462).
18.20 Mass spectrum of 28-norolean-17-en-3-one, characterised by a base peak (B') at m/z 163 and molecular ion (M') at m/z 410. This compound is found in heated pistacia resin. From a sample of yellow varnish from an Eighteenth-Dynasty coffin (BM EA 29580).
18.21 Mass spectrum of nor-hopane, characterised by base peak (B') at m/z 191 and molecular ion (M') at m/z 398. From a sample of black varnish on an Eighteenth-Dynasty 'black style' private anthropoid coffin (BM EA6661).
18.22 Scene of pressing unguents in the Fifth-Dynasty tomb of Iymery at Giza (G6020). (Lepsius 1849–59: II, Bl.49).
18.23 Scene of pressing from the Eleventh-Dynasty tomb of Bakt III at Beni Hasan (BH15) (Newberry 1894a: pl. VI).
18.24 Mass spectrum of methyl dehydroabietate the methyl ester of dehydroabietic acid, with base peak (B') at m/z 239 and molecular ion (M') at m/z 314. From a sample of the contents of a small Middle Kingdom calcite jar from Kahun (Petrie Museum UC7318).
18.25 Mass spectrum of tetramethyl-hexahydrobenzocycloheptane, with a base peak (B') at m/z 119 and a molecular ion (M') at m/z 204. From a sample of the contents of a small Middle Kingdom calcite jar from Kahun (Petrie Museum UC7318).
18.26 Mass spectrum of one of the components found in a trans/thermolytically methylated sample taken from an unprovenanced Late Period scarab (BM unregistered); this component is indicative of amber.
18.27 Mass spectrum of 7-oxodehydroabietate, the methyl ester of 7-oxodehydroabietic acid, characterised by base peak (B') m/z 253 and molecular ion (M') m/z 328. From a sample of a deposit in chest cavity of a Third Intermediate Period mummy (BM EA74303). This compound, found in coniferous resins of the family Pinaceae, was among the components identified in the sample.
19.1 Structure of some amino acids.
19.2 Chromatograms from amino acid analysis of a modern reference collagen and a sample of paint from a wooden sculpture from Deir el-Bersha. Analysis carried out by high performance liquid chromatography (phenylthiocarbonyl derivatives).
19.3 Structures of some monosaccharides and uronic acids.
19.4 Chromatograms from monosaccharide analysis of reference gum arabic and gum tragacanth and some samples from ancient Egyptian objects. Analysis carried out by GC/MS.
19.5 Chromatogram from analysis of the binding medium of a Fayum mummy portrait. Analysis carried out by GC/MS.
19.6 Chromatogram from analysis of a fill material on a stone sarcophagus. Analysis carried out by GC/MS.
20.1 Man’s ‘double-style’ wig from Thebes, New Kingdom (BM EA 2560; photograph courtesy of Joann Fletcher).

20.2 Long wig of Merit, wife of Kha, from tomb TT8 at Deir el-Medina, Eighteenth-Dynasty (Turin, Museo Egizio, Inv. No. S.8499; photograph courtesy of Joann Fletcher).

20.3 Short curled wig of Istemkheb, wife of the high priest Menkheperra, from DB320 at Deir el-Bahari, Twenty-first Dynasty (Cairo JE26252; photograph: Joann Fletcher).

20.4 (a) False front of hair (‘orbis’) from Gurob, dating to the Roman period (Petrie Museum UC7833; drawing by Sharon McDermott and Joann Fletcher). (b) Reconstruction showing how the orbis would have been worn (drawing by Joann Fletcher).

21.1 Diagrams of (a) glume wheat and (b) barley (after Charles 1984: 24).

21.2 Flow chart of pre-storage cereal production and processing stages.

21.3 Diagram of flotation machine.

21.4 Flow chart of basic archaeobotanical process.

21.5 Shaduf scene from the tomb of Neferhotep (TT49) (after Davies 1933: pl. XLVII).

21.6 Ancient Egyptian hoes (after Petrie 1917: pl. XVIII).

21.7 Scene showing an ancient Egyptian plough in use, from the tomb of Paheri at Elkh (EK3) (after Tylor and Griffith 1894: pl. III).

21.8 Ancient Egyptian sickle (after Petrie 1917: pl. LV).

21.9 Harvesting sequence from the tomb of Mereruka at Saqqara (after Duell 1938: pl. 169).

21.10 Harvesting sequence from the tomb of Menna (TT69) at Thebes (after Davies 1936: pl. LI).

21.11 Storage facility (after Badawy 1954: p.128, fig. 81).

22.1a Generalised summary of interpretation of ancient Egyptian brewing, based on and adapted from several different sources.

22.1b Two general accounts of ancient Egyptian baking methods, which are representative of common interpretations of the process.

22.2 The suggested method of ancient Egyptian brewing presented in this chapter, based on microscopy of desiccated brewing residues.

22.3 A model for ancient Egyptian emmer wheat processing, from removal of the semi-cleaned spikelets from store to flour milling.


22.5a A rim sherd with a thin coating of beer residue, from the Workmen’s Village, Amarna (reproduced courtesy of the Committee of the Egypt Exploration Society).

22.5b Large irregular lumps of beer residue, now at the British Museum (reproduced courtesy of the Trustees of the British Museum).

22.6 Schematic diagram of a cereal grain.

22.7 Scanning electron micrograph of a desiccated ancient Egyptian beer residue from the Workmen’s Village, Amarna (sample TAVR02–72) (photograph courtesy of D. Samuel).

22.8a Scanning electron micrograph of the starchy endosperm of a modern emmer grain (photograph by D. Samuel).

22.8b Scanning electron micrograph of the starchy endosperm of a modern emmer grain which has been sprouted for forty-eight hours (photograph by D. Samuel).

22.9 Two sprouted grains recovered from rubbish deposits at the Workmen’s Village, Amarna (reproduced by courtesy of the Committee of the Egypt Exploration Society).

22.10 Scanning electron micrograph of desiccated beer residue from the Workmen’s Village, Amarna (sample TAVR93–100) (photograph by D. Samuel).

22.11 A mortar emplacement in house West Street 2/3 at the Workmen’s Village, Amarna (after Kemp 1987a: 8).

22.12 Drawing of an ancient Egyptian quern emplacement based on a find from house Gate Street 8, the Workmen’s Village, Amarna (after Kemp 1986: 3–5, figs. 1.2–3).
22.13a The experimental quern emplacement in use (photograph courtesy of P.T. Nicholson).
22.13b A close-up view of finely milled flour produced on the experimental quern emplacement (photograph by D. Samuel).
22.14 A baking scene from the Eighteenth-Dynasty tomb of Nebamun at Thebes (TT17) (after Säve-Söderbergh 1957: pl. 22; drawing by Kate Spence).
22.15a A type of Old Kingdom bread mould from Naga el-Deir, dating to the Fourth or Fifth Dynasty (after Jacquet-Gordon 1981: fig. 2.3; drawing by Ian Dennis).
22.15b A reconstructed New Kingdom bread mould from Amarna. (drawing by Andy Boyce).
22.16 A New Kingdom ‘bread platter’ from house P46.33, Amarna (drawing by Andy Boyce).
23.1 First-Dynasty seal impression (after Kaplony 1963–64, figs. 238–9).
23.2 Wine offering liturgy (after Marriette 1869: pl. 36).
23.3 Scene showing the effects of excessive drinking, Tomb of Senna at Thebes (TT169) (after Wilkinson 1878: I, 394).
23.4 Scene from the tomb of Kenamun (TT93), showing a vineyard around a pool (after Davies 1930: I, pl. 47).
23.5 Grape trellis types (after Lerstrup 1992: 78).
23.6 Wine-making scene in the Fifth-Dynasty tomb of Ptahhotep at Saqqara (after Davies 1900: pl. 21).
23.7 Grape harvest and treading scene in the Theban tomb-chapel of Nakht (TT52) (after Davies 1917: pl. 26).
23.8 Treading vat types (after Lerstrup 1992: 80).
23.9 An Old Kingdom wine press, depicted in the Fifth Dynasty tomb-chapel of Niankhkhnum and Khnumhotep at Saqqara (after Moussa and Altenmüller 1977: fig. 16).
23.10 Wine-making scene in the tomb-chapel of Khety at Beni Hasan (BH17) (after Newberry 1894: 2, pl. 16).
23.11 Scene portraying the straining and pressing of grape juice, in the tomb-chapel of Bakt III at Beni Hasan (BH15) (after Newberry 1894: 2, pl. 16).
23.13 Scene showing the blending of different wines from the Twentieth Dynasty tomb of Kynebu at Thebes (TT113) (after Wilkinson 1878: II, 314).
23.14 New Kingdom scene showing the pouring of wine (after Wilkinson 1878: I, 387).
23.15 Stone ring wine stand depicted in the Twentieth-Dynasty tomb of Ramose at Thebes (TT166) (after Wilkinson 1878: I, 388).
23.16 Wine storage depicted in the Eighteenth-Dynasty tomb of Intef at Thebes (TT155) (after Säve-Söderbergh 1957: pl. 15).
23.18 New Kingdom jar sealing types (after Hope 1978: 29, pl. 6).
23.19 Akhenaten and his mother, Queen Tiye, drinking wine in a scene from the tomb of Huya at Amarna (EA1) (after Davies 1905: pl.VI).
24.1 Scene showing offering bearers bringing piles of fruit and vegetables in the Theban tomb of Nakht (TT52) (after Davies 1917: pl. VIII).
24.2 Typical garden layout in a scene decorating the Middle Kingdom tomb of Khnumhotep III at Beni Hasan (BH3) (after Newberry 1893: pl. XXIX).
24.3 Scene from the Fifth-Dynasty tomb of Niankhkhnum and Khnumhotep at Saqqara, showing the cutting and watering of lettuce (Lactuca sativa) (after Manniche 1989: 113).
24.4 Theban tomb-scene showing a pool surrounded by date palms (Phoenix dactylifera) (after Wilkinson 1878: I, 378).
24.5 Detail of a wall-painting in the Ramesside Theban tomb of Irinefer (TT290) showing a dom palm (Hyphaene thebaica) (after Manniche 1989: 109).
24.6 Detail from a reconstructed wall of the Aten temple at East Karnak, showing a workman eating bread, cucumber and onion (Allium cepa) (after Wilson 1988: 20).
24.7 Watermelon (*Citrullus lanatus*). (Drawing by N. Hepper). 633
24.8 Chate Melon (*Cucumis melo var. chate*) (after Alpin 1980: 117). 634
24.9 Chufa or tiger nut (*Cyperus esculentus* L.). (Drawing by W. Schenck). 637
24.10 Lentils (*Lens culinaris*). (Drawing by N. Hepper). 638
24.11 Chick pea (*Cicer arietinum*). (Drawing by N. Hepper). 640
24.12 Coriander (*Coriandrum sativum* L.). (Drawing by N. Hepper). 643
24.13 Black cumin (*Nigella sativa*). (Drawing by N. Hepper). 644
24.14 Fenugreek (*Trigonella foenum-graecum*). (Drawing by N. Hepper) 645
25.1 Scene of butchery in the Fifth-Dynasty tomb of Ty at Saqqara (after Junker 1953: Abb. 88a). 657
25.2 Scene of poultry processing in the tomb of Nakht at Thebes (TT52) after Davies 1917: XXIII). 658
25.3 Scene of fish and roe processing in the Fifth-Dynasty tomb of Ty at Saqqara (after Wild 1953–66: pl. CXXV). 659

25.4 Victual mummy and coffin (Cairo CG51084) from the tomb of Yuya and Tuyu (KV 46) (after Quibell 1908: pl. XXII). 660
25.5 Scene of butchery, the hanging of meat, and the processing of meat in the Twelth- Dynasty tomb of Intefiqaer (TT 60) (after Davies 1920: pl. 8). 661
25.6 Scene of dried duck in the Nineteenth-Dynasty tomb of Ipuy at Thebes (TT 217) (after Davies 1927: pl. XXX). 662
25.7 Scene of processing meat in the Eighteenth-Dynasty tomb of Thutnefer at Thebes (TT104) after Davies 1929: figs. 1a–b). 663
25.8 Scanning electron micrograph of meat fibre and attached crystals (Photograph courtesy of S. Ikram). 666
25.9 Scanning electron micrograph: close-up of crystals on meat fibre (Photograph courtesy of S. Ikram). 666
25.10 Graph showing the results of LINK analysis of those elements identified on meat fibre. 666
Tables

2.1 List of the ancient quarries shown in Figures 2.1a–b.

2.2 List of gemstone sources and quarries shown in Figures 2.2a–b.

2.3 The Udden-Wentworth Scale (after Dietrich and Skinner 1978: 181).

2.4 The Mohs' hardness scale (after Dietrich and Skinner 1979: 21).

2.5 System of nomenclature of quartz.

4.1 List of chemical formulae of compounds cited in the text (in alphabetic order).

7.1 Methods of Egyptian faience manufacture through time (summarised from Vandiver 1983 with new information added).

8.1a Description of the Amarna glass samples taken from core-formed vessel fragments.

8.1b Electron probe analyses of Eighteenth-Dynasty coloured glass samples taken from core-formed vessels excavated by Petrie at Amarna (expressed as weight-percentage of each of the elements in the glasses).

12.1 The terminological associations between madder and alum in Mesopotamia (after Van der Mieroop 1987: 154).

17.1 Proportions of principal fatty acids found in some oils.

17.2 Proportions of principal fatty acids found in some animal fats.

17.3 Classification of oils according to their drying properties.

18.1 Mediterranean distribution of the non-coniferous resin-producing coniferous trees and shrubs.

18.2 Mediterranean distribution of some of the non-coniferous resin-producing plants.

18.3 Distribution of species of Commiphora said to produce gum-resin.

18.4 Details on the exudates produced by certain species of Commiphora.

19.1 A list of the acacias found in Egypt, with information on their distribution.

19.2 Amino acid composition of some proteins and other materials used in adhesives.

19.3 Monosaccharide and uronic acid compositions of some gums and mucilages.

19.4 Binders identified in some objects from the Museum of Fine Arts, Boston.

21.1 Types of evidence for Ancient Egyptian cereal production and processing.

23.1 Elements of wine-making shown in tomb scenes (after Lerstrup 1992: 65).

23.2 The distribution of treading vat types depicted in New Kingdom Theban tombs (after Lerstrup 1992: 81).

24.1 Table of the presence of each species of fruit, vegetable, pulse and condiment on selected Egyptian sites.

24.2 Table of information on Ancient Egyptian fruits.

24.3 Table of information on Ancient Egyptian vegetables.

24.4 Table of information on Ancient Egyptian pulses and condiments.
1. Introduction


During the last two decades the nature of Egyptology has gradually changed, and new technological and socio-economic questions are now being asked of the archaeological data. With this change has come a renewed interest in many aspects of Egyptian materials and technology. So great has this interest become that it is no longer possible for the traditional Egyptologist alone to tackle such questions as the composition of materials, provenance and the means by which different types of artefacts were produced. Many new analytical techniques have been developed and applied and the results are now available, providing a great deal more precision than was previously imaginable.

These new approaches currently being adopted in Egyptology are reflected in the structure of this book. Each chapter has been written by one or more specialists, drawing not only on conventional Egyptological skills but also on expertise in the natural sciences as applied to archaeological data. All the contributors are either involved in recent field projects in Egypt (not least the important Egypt Exploration Society excavations at Amarna and Memphis), or at the forefront of laboratory-based analysis of archaeological materials.

It will be obvious to many readers that this volume has been inspired by Alfred Lucas’s classic work Ancient Egyptian Materials and Industries, which has long served Egyptologists as a standard work of reference. First published in 1926, Lucas’s book has been revised several times, most recently in 1962, when it was updated, primarily in terms of its bibliographic references, by J.R. Harris (see Lucas 1926, 1934, 1948, 1962). Even the fourth edition still primarily reflects the analytical work of a single individual employing the necessarily limited equipment available in the 1920s (see Brunton 1947 and Gilberg 1997 for assessments of the life and work of Alfred Lucas). Despite the importance of Lucas’s work, it has long been recognised that a more modern multi-disciplinary treatment is required, giving not only the result of analyses and technological investigations but also explicitly stating the means by which they were obtained.

While this current volume will not ‘replace’ Lucas’s work, and is not intended as a revised edition of it, it is hoped that it will provide a free-standing source of reference on its subject. Thanks to modern analytical techniques, some chapters will almost entirely supersede those provided by Lucas, while others will provide updated approaches concentrating on new data and new questions. The study of ancient Egyptian material and technology is a vibrant one, with research being conducted by many scholars all over the world (a situation reflected in the diverse list of contributors here). This is quite unlike the situation in the 1920s and 1930s, when most Egyptologists were interested in linguistic and architectural questions, and Lucas was one of a relatively small group of scholars concerned with the analysis of artefacts. As a result of the new vigour of the subject, this volume will perhaps not enjoy the very long currency of Lucas’s work but will, we hope, provide a solid basis for future work.

Here we are fundamentally concerned with the study of the procurement and processing of the raw materials employed by the ancient Egyptians. The book is not meant to be an art historical typology of objects produced in any given material, nor a text book on the scientific analysis of such materials. Each chapter is intended to provide an overview of the current state of research on the material in question. In some cases, this is not possible, either because modern research on certain materials (e.g. leather, meat, basketry) has only just begun or because the quantity of data has become so great in recent years that the most meaningful approaches tend to be those that focus on particular problems (as in the case of the chapters on pottery, stone and mummies).

The basic structure and coverage of the book were finalised at a seminar involving most of the contributors in 1994, when it was agreed that chapters on food technology should be included, as these represent a fruitful area of research that has almost entirely emerged in the years since Lucas’s time. The contributors have made every effort to provide explicit information on the scientific analyses conducted, since the lack of such detail has been an increasing problem in judging the value of some of Lucas’s conclusions. It was also agreed that some indication of the workings and limitations of relevant analytical techniques
was necessary so that non-specialists would be better able to judge the results of earlier and current research.

References