Introduction to Aircraft Design

JOHN P. FIELDING

College of Aeronautics, Cranfield University
Contents

Preface xi

Acknowledgements xiii

1 Introduction 1
 1.1 Why another aircraft design book? 1
 1.2 Topics 2
 1.3 The design process 2

2 Why should we design a new aircraft? 7
 2.1 Market surveys 7
 2.2 Operator-derived specifications 11
 2.3 Specification for a close air support aircraft 12
 2.4 Airline specification for a 150-seat airliner 13

3 Why is it that shape? — Civil aircraft 19
 3.1 Background 19
 3.2 Civil aircraft types 24

4 Why is it that shape? — Other types 37
 4.1 Military aircraft types 37
 4.2 Rotorcraft and V/STOL aircraft 50

5 What’s under the skin? — Structure and propulsion 55
 5.1 General 55
 5.2 The structure 55
 5.3 Propulsion — the primary power system 63

6 What’s under the skin? — Airframe systems 73
 6.1 Secondary power systems 73
 6.2 The fuel system 80
 6.3 Furnishings 82
 6.4 Safety installations 83
 6.5 Landing gear installations 84
Contents

7 What’s under the skin? – Avionics, flight control and weapon systems
 7.1 Avionic systems 89
 7.2 Flight control systems 96
 7.3 Weapon systems 100

8 Why do aircraft cost so much?
 8.1 General 109
 8.2 Acquisition costs (the costs of buying or acquiring the aircraft) 109
 8.3 Civil aircraft operating costs 115
 8.4 Military aircraft life-cycle costs 116
 8.5 The costs of reliability and maintainability 118

9 What help can I get? – Bibliography and computer-aided design
 9.1 Aircraft design bibliography 129
 9.2 Relevant data sheets 131
 9.3 Computer design tools 135
 9.4 The integration of computer tools as part of concurrent engineering 140
 9.5 Classic computer-aided design systems 141

10 The shape of things to come – Should the project continue?
 10.1 Introduction 149
 10.2 Conceptual design definition 149
 10.3 Comparison and choice 150
 10.4 Simple decision-making techniques 151
 10.5 Example of a conceptual aircraft design definition description – The Cranfield A–90 153
 10.6 Progress of the A–90 project beyond the conceptual design stage 161

11 What can go wrong? – Some lessons from past aircraft projects, and a glimpse into the future
 11.1 Introduction 163
 11.2 Aircraft that suffered from requirements that were too restrictive, too ambitious or were changed during development 163
 11.3 Projects that were overtaken by events 167
 11.4 A step too far or too soon? 171
 11.5 Some challenging future projects 174
 11.6 Conclusions 177

Appendix A – Useful aircraft design data
 A1 Introduction 179
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>US/UK nomenclature</td>
<td>179</td>
</tr>
<tr>
<td>A3</td>
<td>UK and US/SI conversion tables and airspeed charts</td>
<td>180</td>
</tr>
<tr>
<td>A4</td>
<td>Aircraft leading data tables</td>
<td>183</td>
</tr>
<tr>
<td>A5</td>
<td>Power plant data</td>
<td>196</td>
</tr>
<tr>
<td>A6</td>
<td>Aerodynamic data</td>
<td>213</td>
</tr>
<tr>
<td>A7</td>
<td>Structures and materials data</td>
<td>220</td>
</tr>
<tr>
<td>A8</td>
<td>Landing gear data</td>
<td>222</td>
</tr>
<tr>
<td>A9</td>
<td>Aircraft interior data</td>
<td>223</td>
</tr>
<tr>
<td>A10</td>
<td>Aircraft weapons</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Appendix B – A-90 parametric study. Example – the A-90 500-seat airliner</td>
<td>243</td>
</tr>
<tr>
<td>B1</td>
<td>Introduction</td>
<td>243</td>
</tr>
<tr>
<td>B2</td>
<td>Landing field distance</td>
<td>243</td>
</tr>
<tr>
<td>B3</td>
<td>Take-off field length</td>
<td>245</td>
</tr>
<tr>
<td>B4</td>
<td>Second segment climb</td>
<td>246</td>
</tr>
<tr>
<td>B5</td>
<td>Missed approach</td>
<td>247</td>
</tr>
<tr>
<td>B6</td>
<td>Cruise performance</td>
<td>248</td>
</tr>
<tr>
<td>B7</td>
<td>Ceiling with one engine inoperative</td>
<td>252</td>
</tr>
<tr>
<td>B8</td>
<td>Arrival at the match point</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Appendix C – The prediction of aircraft reliability and maintainability targets</td>
<td>255</td>
</tr>
<tr>
<td>C1</td>
<td>Introduction</td>
<td>255</td>
</tr>
<tr>
<td>C2</td>
<td>Commercial aircraft dispatch reliability prediction</td>
<td>255</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>261</td>
</tr>
</tbody>
</table>
1

Introduction

1.1 Why another aircraft design book?

Aircraft design is a complex and fascinating business and many books have been written about it. The very complexity and dynamic nature of the subject means that no one book can do it justice.

This book, therefore, will primarily act as an introduction to the whole field of aircraft design leading towards the subjects summarized in Fig. 1.1. It will not attempt to duplicate material found in existing design books, but will give information about the whole aircraft design environment together with descriptions of aircraft and component design. It also presents otherwise unpublished data and design methods that are suitable for aircraft conceptual, preliminary and detail design activities.

Fig. 1.1 Aircraft design data sources.
1.2 Topics

The following chapters are arranged as a series of questions about aircraft design, the answers to which give largely descriptive overviews of all aspects of aircraft design. This will provide an introduction into the conflicting requirements of aircraft design specialists in a design team, with a view to improving understanding, and the integration of a sound overall design.

The book is divided into chapters which answer a number of significant design questions.

Chapters 3 and 4 answer the question ‘why is it that shape?’ with an initial discussion of aircraft wing and tail shapes, followed by descriptions of the configurations of a wide range of civil and military aircraft types.

The question ‘what’s under the skin?’ is answered in Chapters 5, 6 and 7, which deal with structures and propulsion, airframe systems, avionics, flight controls and weapons, respectively. These chapters describe the interiors of aircraft, ranging from structures to weapon systems via airframe systems, avionic systems and landing gears.

In Chapter 8 the crucial areas of acquisition and operating costs are discussed and some prediction methods are described and the importance of good reliability and maintainability are stressed in order to answer the question, ‘why do aircraft cost so much.’

The answer to the question ‘what help can I get?’ is provided in Chapter 9 which contains a bibliography of the most important current aircraft design books. It is followed by a description of some of the computer design analysis and computer-aided design (CAD) tools that are available. A summary of relevant data sheets is also given.

Chapter 10 draws together the information produced at the end of the conceptual stage and leads on to the preliminary and detail design stages in order to explain ‘what happens next’. The question ‘what can go wrong’ is answered in Chapter 11 in which many unsuccessful or partially successful projects are examined and conclusions drawn from them.

The aircraft designer is bedeviled by lack of design data. Appendix A pulls together information that is not generally available, and includes simple aerodynamic and structural design formulae. It also provides a US/British translation list for aeronautical terms.

Appendix B presents a parametric study design example which describes the author’s parametric study of a 500-seat transport aircraft. Appendix C considers reliability and maintainability targets by discussing targets for civil and military aircraft and describing a method to be used for the prediction of dispatch reliability.

1.3 The design process

There are a number of generally accepted stages in the design, development, manufacture and operation of aircraft, each with associated design methods and data requirements. These are shown schematically in Fig. 1.2, which also shows how the modern practice of concurrent engineering has reduced the overall timescale from conception to service.

Figure 1.3 gives some idea of how a designer’s prejudice may affect his or her design to the detriment of others. It is an exaggeration, but not much of an exaggeration!!
1.3 The design process

Fig. 1.2 Comparison of traditional and concurrent design approaches.

Fig. 1.3 Different specialist's views of an ideal aircraft.
The most crucial stage of any design process is to arrive at the correct set of requirements for the aircraft. These are summarized in design specifications for the particular aircraft type. Typical examples of design specifications are shown in Chapter 2. They are augmented by a large number of airworthiness requirements for civil aircraft or Defence Standards for military aircraft. These are distillations of decades of successful (and unsuccessful!) design, manufacturing and operational experience. Fig. 1.4, adapted from Haberland et al. [1], shows a very helpful illustration of what may happen after the issue of the design specifications, and illustrates the iterative design process that is not apparent in the simplified illustration in Fig. 1.2.

A converging iterative spiral of design stages, ending in the detail design, and ultimately manufacture and operation of the aircraft can be seen in Fig. 1.4.

It is a truism that 99% of the decisions which affect aircraft success are made on 1% of the facts available during the conceptual design phase. Very coarse methods have to be used which are then refined by progressively more accurate methods as the design evolves. This is true if the spiral is convergent, but there are occasions where the spiral is divergent and the design must be abandoned, and started again, unless significant modifications are made to the design.

Figure 1.5 shows the author’s usual design procedure for conceptual design and the start of preliminary design process.
1.3 The design process

Fig. 1.5 Major stages in an airliner initial design process.