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1 Essentials of general relativity

1.1 The concepts of general relativity

special relativity To understand the issues involved in general relativity, it is

helpful to begin with a brief summary of the way space and time are treated in special

relativity. The latter theory is an elaboration of the intuitive point of view that the

properties of empty space should be the same throughout the universe. This is just a

generalization of everyday experience: the world in our vicinity looks much the same

whether we are stationary or in motion (leaving aside the inertial forces experienced by

accelerated observers, to which we will return shortly).

The immediate consequence of this assumption is that any process that depends

only on the properties of empty space must appear the same to all observers: the velocity

of light or gravitational radiation should be a constant. The development of special

relativity can of course proceed from the experimental constancy of c, as revealed by

the Michelson-Morley experiment, but it is worth noting that Einstein considered the

result of this experiment to be inevitable on intuitive grounds (see Pais 1982 for a

detailed account of the conceptual development of relativity). Despite the mathematical

complexity that can result, general relativity is at heart a highly intuitive theory; the way

in which our everyday experience can be generalized to deduce the large-scale structure

of the universe is one of the most magical parts of physics. The most important concepts

of the theory can be dealt with without requiring much mathematical sophistication, and

we begin with these physical fundamentals.

4-vectors From the constancy of c, it is simple to show that the only possible linear

transformation relating the coordinates measured by different observers is the Lorentz

transformation:

dx′ = γ
(
dx − v

c
c dt
)

c dt′ = γ
(
c dt − v

c
dx
)
.

(1.1)

Note that this is written in a form that makes it explicit that x and ct are treated in the

same way. To reflect this interchangeability of space and time, and the absence of any

preferred frame, we say that special relativity requires all true physical relations to be

written in terms of 4-vectors. An equation valid for one observer will then apply to all
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others because the quantities on either side of the equation will transform in the same

way. We ensure that this is so by constructing physical 4-vectors out of the fundamental

interval

dxµ = (c dt, dx, dy, dz) µ = 0, 1, 2, 3, (1.2)

by manipulations with relativistic invariants such as rest mass m and proper time dτ,

where

(c dτ)2 = (c dt)2 − (dx2 + dy2 + dz2). (1.3)

Thus, defining the 4-momentum Pµ = mdxµ/dτ allows an immediate relativistic

generalization of conservation of mass and momentum, since the equation ∆Pµ = 0

reduces to these laws for an observer who sees a set of slowly moving particles. This

is a very powerful principle, as it allows us to reject ‘obviously wrong’ physical laws

at sight. For example, Newton’s second law F = mdu/dt is not a relation between the

spatial components of two 4-vectors. The obvious way to define 4-force is Fµ = dPµ/dτ,

but where does the 3-force F sit in Fµ? Force will still be defined as rate of change

of momentum, F = dP/dt; the required components of Fµ are γ(Ė,F), and the correct

relativistic force–acceleration relation is

F = m
d

dt
(γu). (1.4)

Note again that the symbol m denotes the rest mass of the particle, which is one of

the invariant scalar quantities of special relativity. The whole ethos of special relativity

is that, in the frame in which a particle is at rest, its intrinsic properties such as mass

are always the same, independently of how fast it is moving. The general way in which

quantities are calculated in relativity is to evaluate them in the rest frame where things

are simple, and then to transform out into the lab frame.

general relativity Nothing that has been said so far seems to depend on whether

or not observers move at constant velocity. We have in fact already dealt with the main

principle of general relativity, which states that the only valid physical laws are those

that equate two quantities that transform in the same way under any arbitrary change

of coordinates.

Before getting too pleased with ourselves, we should ask how we are going to

construct general analogues of 4-vectors. Consider how the components of dxµ transform

under the adoption of a new set of coordinates x′µ, which are functions of xν:

dx′µ =
∂x′µ
∂xν

dxν . (1.5)

This apparently trivial equation (which assumes, as usual, the summation convention on

repeated indices) may be divided by dτ on either side to obtain a similar transformation

law for 4-velocity, Uµ; so Uµ is a general 4-vector. Things unfortunately go wrong at

the next level, when we try to differentiate this new equation to form the 4-acceleration

Aµ = dUµ/dτ:

A′µ =
∂x′µ
∂xν

Aν +
∂2x′µ
∂τ ∂xν

Uν. (1.6)



1.1 The concepts of general relativity 5

The second term on the right-hand side (rhs) is zero only when the transformation

coefficients are constants. This is so for the Lorentz transformation, but not in general.

The conclusion is therefore that Fµ = dPµ/dτ cannot be a general law of physics, since

dPµ/dτ is not a general 4-vector.

inertial frames and mach’s principle We have just deduced in a rather

cumbersome fashion the familiar fact that F = ma only applies in inertial frames

of reference. What exactly are these? There is a well-known circularity in Newtonian

mechanics, in that inertial frames are effectively defined as being those sets of observers

for whom F = ma applies. The circularity is only broken by supplying some independent

information about F – for example, the Lorentz force F = e(E + v∧B) in the case of a

charged particle. This leaves us in a rather unsatisfactory situation: F = ma is really only

a statement about cause and effect, so the existence of non-inertial frames comes down

to saying that there can be a motion with no apparent cause. Now, it is well known that

F = ma can be made to apply in all frames if certain ‘fictitious’ forces are allowed to

operate. In respectively uniformly accelerating and rotating frames, we would write

F = ma + mg

F = ma + mΩ∧(Ω∧r) − 2m(v∧Ω) + mΩ̇∧r.
(1.7)

The fact that these ‘forces’ have simple expressions is tantalizing: it suggests that they

should have a direct explanation, rather than taking the Newtonian view that they arise

from an incorrect choice of reference frame. The relativist’s attitude will be that if our

physical laws are correct, they should account for what observers see from any arbitrary

point of view – however perverse.

The mystery of inertial frames is deepened by a fact of which Newton was well

aware, but did not explain: an inertial frame is one in which the bulk of matter in the

universe is at rest. This observation was taken up in 1872 by Ernst Mach. He argued

that since the acceleration of particles can only be measured relative to other matter in

the universe, the existence of inertia for a particle must depend on the existence of other

matter. This idea has become known as Mach’s principle, and was a strong influence on

Einstein in formulating general relativity. In fact, Mach’s ideas ended up very much in

conflict with Einstein’s eventual theory – most crucially, the rest mass of a particle is a

relativistic invariant, independent of the gravitational environment in which a particle

finds itself. However, controversy still arises in debating whether general relativity is

truly a ‘Machian’ theory – i.e. one in which the rest frame of the large-scale matter

distribution is inevitably an inertial frame (e.g. Raine & Heller 1981).

A hint at the answer to this question comes by returning to the expressions for

the inertial forces. The most satisfactory outcome would be to dispose of the notion

of inertial frames altogether, and to find a direct physical mechanism for generating

‘fictitious’ forces. Following this route in fact leads us to conclude that Newtonian

gravitation cannot be correct, and that the inertial forces can be effectively attributed to

gravitational radiation. Since we cannot at this stage give a correct relativistic argument,

consider the analogy with electromagnetism. At large distances, an accelerating charge

produces an electric field given by

E =
e

4πε0rc2
(r̂∧[a])∧ r̂, (1.8)

i.e. with components parallel to the retarded acceleration [a] and perpendicular to the
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acceleration axis. A charge distribution symmetric about a given point will then generate

a net force on a particle at that point in the direction of a. It is highly plausible that

something similar goes on in the generation of inertial forces via gravity, and we can

guess the magnitude by letting e/(4πε0) → Gm. This argument was proposed by Dennis

Sciama, and is known as inertial induction. Integrating such a force over all mass in a

spherically symmetric universe, we get a total of

Ftot

m
= 2π

Ga

c2

∫ c/H0

0

∫ π

0

ρ r sin3 θ dθ dr = a
π2Gρ

2H2
0

. (1.9)

This calculation is rough in many respects. The main deficiency is the failure to include

the expansion of the universe: objects at a vector distance r appear to recede from us at a

velocity v = H0r, where H0 is known as Hubble’s constant (and is not constant at all, as

will become apparent later). This law is only strictly valid at small distances, of course,

but it does tell us that objects with r � c/H0 recede at a speed approaching that of light.

This is why it seems reasonable to use this as an upper cutoff in the radial part of the

above integral. Having done this, we obtain a total acceleration induced by gravitational

radiation that is roughly equal to the acceleration we first thought of (the dimensionless

factor on the rhs of the above equation is known experimentally to be unity to within a

factor 10 or so). Thus, it does seem qualitatively valid to think of inertial forces as arising

from gravitational radiation. Apart from being a startlingly different view of what is

going on in non-inertial frames, this argument also sheds light on Mach’s principle: for a

symmetric universe, inertial forces clearly vanish in the average rest frame of the matter

distribution. Frames in constant relative motion are allowed because (in this analogy) a

uniformly moving charge does not radiate.

It is not worth trying to make this calculation more precise, as the approach

is not really even close to being a correct relativistic treatment. Nevertheless, it does

illustrate very well the prime characteristic of relativistic thought: we must be able to

explain what we see from any point of view.

the equivalence principle In the previous subsection, we were trying to

understand the non-inertial effects that are seen in accelerating reference frames as

being gravitational in origin. In fact, it is more conventional to state this equivalence the

other way around, saying that gravitational effects are identical in nature to those arising

through acceleration. The seed for this idea goes back to the observation by Galileo that

bodies fall at a rate independent of mass. In Newtonian terms, the acceleration of a

body in a gravitational field g is

mI a = mG g, (1.10)

and no experiment has ever been able to detect a difference between the inertial and

gravitational masses mI and mG (the equality holds to better than 1 part in 1011: Will

1993). This equality is trivially obvious in the case of inertial forces, and the apparent

gravitational acceleration g becomes simply the acceleration of the frame a. These

considerations led Einstein to suggest that inertial and gravitational forces were indeed

one and the same. Formally, this leads us to the equivalence principle, which comes in

two forms.

The weak equivalence principle is a statement only about space and time. It says

that in any gravitational field, however strong, a freely falling observer will experience
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no gravitational effects – with the important exception of tidal forces in non-uniform

fields. The spacetime will be that of special relativity (known as Minkowski spacetime).

The strong equivalence principle takes this a stage further and asserts that not

only is the spacetime as in special relativity, but all the laws of physics take the same

form in the freely falling frame as they would in the absence of gravity. This form of

the equivalence principle is crucial in that it will allow us to deduce the generally valid

laws governing physics once the special-relativistic forms are known. Note however that

it is less easy to design experiments that can test the strong equivalence principle (see

chapter 8 of Will 1993).

It may seem that we have actually returned to something like the Newtonian

viewpoint: gravitation is merely an artifact of looking at things from the ‘wrong’ point

of view. This is not really so; rather, the important aspects of gravitation are not so much

to do with first-order effects as second-order tidal forces: these cannot be transformed

away and are the true signature of gravitating mass. However, it is certainly true in one

sense to say that gravity is not a real force: the gravitational acceleration is not derived

from a 4-force Fµ and transforms differently.

gravitational time dilation Many of the important features of general relativity

can be obtained via rather simple arguments that use the equivalence principle. The

most famous of these is the thought experiment that leads to gravitational time dilation,

illustrated in figure 1.1. Consider an accelerating frame, which is conventionally a rocket

of height h, with a clock mounted on the roof that regularly disgorges photons towards

the floor. If the rocket accelerates upwards at g, the floor acquires a speed v = gh/c in

the time taken for a photon to travel from roof to floor. There will thus be a blueshift

in the frequency of received photons, given by ∆ν/ν = gh/c2, and it is easy to see that

the rate of reception of photons will increase by the same factor.

Now, since the rocket can be kept accelerating for as long as we like, and since

photons cannot be stockpiled anywhere, the conclusion of an observer on the floor of the

rocket is that in a real sense the clock on the roof is running fast. When the rocket stops

accelerating, the clock on the roof will have gained a time ∆t by comparison with an

identical clock kept on the floor. Finally, the equivalence principle can be brought in to

conclude that gravity must cause the same effect. Noting that ∆φ = gh is the difference

in potential between roof and floor, it is simple to generalize this to

∆t

t
=

∆φ

c2
. (1.11)

The same thought experiment can also be used to show that light must be deflected

in a gravitational field: consider a ray that crosses the rocket cabin horizontally when

stationary. This track will appear curved when the rocket accelerates.

The experimental demonstration of the gravitational redshift by Pound & Rebka

(1960) was one of the main pieces of evidence for the essential correctness of the above

reasoning, and provides a test (although not the most powerful one) of the equivalence

principle.

the twin paradox One of the neatest illustrations of gravitational time dilation is

in resolving the twin paradox. This involves twins A and B, each equipped with a clock.
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c
g

c
g

Figure 1.1. Imagine you are in a box in free space far from any source
of gravitation. If the box is made to accelerate ‘upwards’ and has a clock
that emits a photon every second mounted on its roof, it is easy to see that
you will receive photons more rapidly once the box accelerates (imagine
yourself running into the line of oncoming photons). Now, according to
the equivalence principle, the situation is exactly equivalent to the second
picture in which the box sits at rest on the surface of the Earth. Since there
is nowhere for the excess photons to accumulate, the conclusion has to be
that clocks above us in a gravitational field run fast.

A remains on Earth, while B travels a distance d on a rocket at velocity v, fires the

engines briefly to reverse the rocket’s velocity, and returns. The standard analysis of this

situation in special relativity concludes, correctly, that A’s clock will indicate a longer

time for the journey than B’s:

tA = γ tB. (1.12)

The so-called paradox lies in the broken symmetry between the twins. There are various

resolutions of this puzzle, but these generally refuse to meet the problem head-on by

analysing things from B’s point of view. However, at least for small v, it is easy to do

this using the equivalence principle. There are three stages to consider:

(1) Outward trip. According to B, in special relativity A’s clock runs slow:

tA = γ−1tB � [1 − v2/(2c2)](d/v).

(2) Return trip. Similarly, A’s clock runs slow, resulting in a total lag with respect to

B’s of (v2/c2)(d/v) = vd/c2.



1.2 The equation of motion 9

(3) In between comes the crucial phase of turning. During this time, B’s frame is

non-inertial; there is an apparent gravitational field causing A to halt and start to

return to B (at least, what else is B to conclude? There is obviously a force acting

on the Earth, but the Earth is clearly not equipped with rockets). If an acceleration

g operates for a time tturn, then A’s clock will run fast by a fractional amount

gd/c2, leading to a total time step of gdtturn/c
2 = 2vd/c2 (since gtturn = 2v).

Thus, in total, B returns to find A’s clock in advance of B’s by an amount

tA − tB = − vd

c2
+

2vd

c2
� (γ − 1)tB, (1.13)

exactly (for small v) in accordance with A’s entirely special relativity calculation.

1.2 The equation of motion

It was mentioned above that the equivalence principle allows us to bootstrap our way

from physics in Minkowski spacetime to general laws. We can in fact obtain the full

equations of general relativity in this way, in an approach pioneered by Weinberg

(1972). In what follows, note the following conventions: Greek indices run from 0 to

3 (spacetime), Roman from 1 to 3 (spatial). The summation convention on repeated

indices of either type is assumed.

Consider freely falling observers, who erect a special-relativity coordinate frame

ξµ in their neighbourhood. The equation of motion for nearby particles is simple:

d2ξµ

d τ2
= 0; ξµ = (ct, x, y, z), (1.14)

i.e. they have zero acceleration, and we have Minkowski spacetime

c2dτ2 = ηαβ dξ
αdξβ, (1.15)

where ηαβ is just a diagonal matrix ηαβ = diag(1,−1,−1,−1). Now suppose the observers

make a transformation to some other set of coordinates xµ. What results is the perfectly

general relation

dξµ =
∂ξµ

∂xν
dxν , (1.16)

which on substitution leads to the two principal equations of dynamics in general

relativity:

d2xµ

dτ2
+ Γ

µ
αβ

dxα

dτ

dxβ

dτ
= 0

c2dτ2 = gαβ dx
α dxβ.

(1.17)

At this stage, the new quantities appearing in these equations are defined only in terms

of our transformation coefficients:

Γ
µ
αβ =

∂xµ

∂ξν
∂2ξν

∂xα∂xβ

gµν =
∂ξα

∂xµ
∂ξβ

∂xν
ηαβ.

(1.18)
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coordinate transformations What is the physical meaning of this analysis? We

have taken the special relativity equations for motion and the structure of spacetime

and looked at the effects of a general coordinate transformation. One example of such

a transformation is a Lorentz boost to some other inertial frame. However, this is not

very interesting since we know in advance that the equations retain their form in this

case (it is easy to show that Γ
µ
αβ = 0 and gµν = ηµν). A more general transformation

could be one to the frame of an accelerating observer, but the transformation might have

no direct physical interpretation at all. It is important to realize that general relativity

makes no distinction between coordinate transformations associated with motion of the

observer and a simple change of variable. For example, we might decide that henceforth

we will write down coordinates in the order (x, y, z, ct) rather than (ct, x, y, z) (as is

indeed the case in some formalisms). General relativity can cope with these changes

automatically. Indeed, this flexibility of the theory is something of a problem: it can

sometimes be hard to see when some feature of a problem is ‘real’, or just an artifact

of the coordinates adopted. People attempt to distinguish this second type of coordinate

change by distinguishing between ‘active’ and ‘passive’ Lorentz transformations; a more

common term for the latter class is gauge transformation. The term gauge will occur

often throughout this book: it always refers to some freedom within a theory that has no

observable consequence (e.g. the arbitrary value of ∇∇∇∇∇∇∇∇∇∇∇∇∇ · A, where A is the vector potential

in electrodynamics).

metric and connection The matrix gµν is known as the metric tensor. It expresses

(in the sense of special relativity) a notion of distance between spacetime points. Although

this is a feature of many spaces commonly used in physics, it is easy to think of cases

where such a measure does not exist (for example, in a plot of particle masses against

charges, there is no physical meaning to the distance between points). The fact that

spacetime is endowed with a metric is in fact something that has been deduced , as a

consequence of special relativity and the equivalence principle. Given a metric, Minkowski

spacetime appears as an inevitable special case: if the matrix gµν is symmetric, we know

that there must exist a coordinate transformation that makes the matrix diagonal:

Λ̃gΛ = diag(λ0, . . . , λ3), (1.19)

where Λ is the matrix of transformation coefficients, and λi are the eigenvalues of this

matrix.

The object gµν is called a tensor, since it occurs in an equation c2dτ2 = gµνdx
µdxν

that must be valid in all frames. In order for this to be so, the components of the matrix

g must obey certain transformation relations under a change of coordinates. This is one

way of defining a tensor, an issue that is discussed in detail below.

So much for the metric tensor, what is the meaning of the coefficients Γ
µ
αβ?

These are known as components of the affine connection or as Christoffel symbols (and

are sometimes written in the alternative notation { µ
αβ }). These quantities obviously

correspond roughly to the gravitational force – but what determines whether such a

force exists? The answer is that gravitational acceleration depends on spatial change in

the metric. For a simple example, consider gravitational time dilation in a weak field:

for events at the same spatial position, there must be a separation in proper time of

dτ � dt

(
1 +

∆φ

c2

)
. (1.20)
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This suggests that the gravitational acceleration should be obtained via

a = −c2

2
∇∇∇∇∇∇∇∇∇∇∇∇∇g00. (1.21)

More generally, we can differentiate the equation for gµν to get

∂gµν

∂xλ
= Γα

λµgαν + Γ
β
λνgβµ. (1.22)

Using the symmetry of the Γ’s in their lower indices, and defining gµν to be the matrix

inverse to gµν , we can find an equation for the Γ’s directly in terms of the metric tensor:

Γα
λµ = 1

2g
αν

(
∂gµν

∂xλ
+

∂gλν

∂xµ
− ∂gµλ

∂xν

)
. (1.23)

Thus, the metric tensor is the crucial object in general relativity: given it, we know both

the structure of spacetime and how particles will move.

1.3 Tensors and relativity

Before proceeding further, the above rather intuitive treatment should be set on a slightly

firmer mathematical foundation. There are a variety of possible approaches one can take,

which differ sufficiently that general relativity texts for physicists and mathematicians

sometimes scarcely seem to refer to the same subject. For now, we stick with a rather

old-fashioned approach, which has the virtue that it is likely to be familiar. Amends will

be made later.

covariant and contravariant components So far, tensors have been met in

their role as quantities that provide generally valid relations between different 4-vectors. If

such relations are to be physically useful, they must apply in different frames of reference,

and so the components of tensors have to change to compensate for the fact that the

components of 4-vectors alter under a coordinate transformation. The transformation law

for tensors is obtained from that for 4-vectors. For example, consider c2dτ2 = gαβdx
αdxβ:

substitute for dxµ in terms of dx′α and require that the resulting equation must have the

form c2dτ2 = g′
αβdx

′αdx′β . We then deduce the tensor transformation law

g′
αβ =

∂xµ

∂x′α
∂xν

∂x′β gµν , (1.24)

of which law our above definition of gµν in terms of ηαβ is an example.

Note that this transformation law looks rather like a generalization of that for a

single 4-vector (with one transformation coefficient per index), but with the important

difference that the coefficients are upside down in the tensor relation. For Cartesian

coordinates, this would make no difference:

∂xµ

∂x′α =
∂x′α
∂xµ

= cos θ, (1.25)

where θ is the angle of rotation between the two coordinate axes. In general, though,
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the transformations are not the same. To illustrate this, consider a set of non-orthogonal

basis vectors ei: there are two ways to define the components of a vector a:

(1) a =
∑

aiei

(2) ai = a · ei.
(1.26)

These clearly differ in general if ei · ej 
= 0, and they are distinguished by writing an

index ‘upstairs’ on one and ‘downstairs’ on the other.

Something very similar goes on in general relativity. If we define a new vector

dxν ≡ gανdx
α, (1.27)

then our metric is given by

c2dτ2 = dxνdx
ν . (1.28)

In special relativity, this would yield just xµ = (ct,−x,−y,−z). In general relativity, it

defines the relations between the contravariant components of a 4-vector Aµ and the

covariant components Aµ. These names reflect that the components transform either in

the same way as basis vectors (covariant) or oppositely (contravariant). The relevant

transformation laws are

A′µ =
∂x′µ
∂xν

Aν

A′
µ =

∂xν

∂x′µ Aν .

(1.29)

This generalizes to any tensor, by multiplying by the appropriate factor for each index.

invariants To summarize the above arguments, one can only construct an invariant

quantity in general relativity (i.e. one that is the same for all observers) by contracting

vector or tensor indices in pairs: AµAµ is the invariant ‘size’ or norm of the vector Aµ.

However, AµAµ would not be a constant, since the effects of arbitrary coordinate changes

do not cancel out unless upstairs and downstairs indices contract with each other.

This sounds like a tedious complication, but it can be turned to advantage.

Suppose we are given an equation such as AµBµ = 1, and that Aµ is known to be a

4-vector. Clearly, the right-hand side of the equation is invariant, and so the only way

in which this can happen in general is if Bµ is also a 4-vector. This trick of deducing the

nature of quantities in a relativistic equation is called the principle of manifest covariance.

As an example, consider the coordinate derivative, for which there exists the common

shorthand

∂µ ≡ ∂

∂xµ
. (1.30)

The index must be ‘downstairs’ since the derivative operates only on one coordinate:

∂µx
ν = δνµ = diag(1, 1, 1, 1). (1.31)

Thus, ∂µx
µ = 4 is an invariant, justifying the use of a downstairs index for ∂µ. More

generally, the tensor δνµ must be an isotropic tensor (meaning one whose components are
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the same in all frames), since it must exist in order to define the inverse matrix to some

tensor Tµν . Indeed, we have already met an example of this in writing the inverse matrix

to gµν as a contravariant tensor:

gµαgµβ = δαβ. (1.32)

The metric tensor is therefore the tool that is used to raise and lower indices, so

that

Aµ ≡ gµνA
ν . (1.33)

For example, in special relativity, the 4-derivatives are therefore

∂µ =

(
∂

∂ct
,∇∇∇∇∇∇∇∇∇∇∇∇∇
)

∂µ =

(
∂

∂ct
,−∇∇∇∇∇∇∇∇∇∇∇∇∇

)
.

(1.34)

Manifest covariance allows quantities like the 4-current Jµ = (cρ, j) to be recognized as

4-vectors, since they allow the conservation law to be written relativistically: ∂µJµ = 0.

To summarize, tensor equations with indices in the same relative positions on

either side of the expression must be generally valid. An unfortunate term is used for

this: the equations are said to be generally covariant – i.e. to have the same form for all

observers. This has nothing to do with the usage of the term when referring to covariant

vectors; it is a historical accident with which one simply has to live.

pseudotensors and tensor densities If we regard a second-rank tensor as

a matrix, there is another familiar way of forming a number. In addition to tensor

contraction, we can also take the determinant:

g ≡ −det gµν . (1.35)

This is not an invariant scalar; thinking of tensor transformations in matrix terms

(g′ = Λ̃gΛ) shows that g′ depends on the Jacobian of the coordinate transformation:

g′ =

∣∣∣∣∂x′µ
∂xν

∣∣∣∣
−2

g. (1.36)

The reason why this quantity arises in relativity comes from volume elements: under a

general coordinate transformation, the hypervolume element behaves as

d4x′µ =

∣∣∣∣
∣∣∣∣∂x′α
∂xβ

∣∣∣∣
∣∣∣∣ d4xµ, (1.37)

so that an invariant normalization of some scalar ρ can only be constructed via∫ √−g ρ d4xµ = constant. (1.38)

The quantity
√−g ρ is referred to as a scalar density. More generally, an object formed

from a tensor and n powers of
√−g is called a tensor density of weight n.
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proper and improper transformations One important consequence of the

existence of tensor densities arises when considering coordinate transformations that

involve a spatial reflection. It is usual to distinguish between different classes of Lorentz

transformations according to the sign of their corresponding Jacobians: proper Lorentz

transformations have J > 0, whereas those with negative Jacobians are termed improper.

In special relativity, where g = −1 always, there are two possibilities: J = ±1. Thus, a

tensor density will in special relativity transform like a tensor if we restrict ourselves to

proper transformations. However, on spatial inversion, densities of odd weight will change

sign. Such quantities are referred to as pseudotensors (or, in special cases pseudovectors

or pseudoscalars). The most famous example of this is the totally antisymmetric Levi–

Civita pseudotensor εαβγδ , which has components +1 when αβγδ is an even permutation

of 0123, −1 for odd permutations and zero otherwise. One can show explicitly that

this frame-independent component definition produces a tensor density of weight −1

by applying the transformation law for such a quantity and verifying the invariance

of the components (not too hard since ε enters into the definition of the determinant).

Lowering indices with the metric tensor produces a covariant density of weight −1:

εαβγδ = gεαβγδ . (1.39)

In special relativity, εαβγδ is therefore of opposite sign to εαβγδ .

physics in general relativity So far, we have dealt with how to generalize

gravitational dynamics, but how are other parts of physics incorporated into general

relativity? A hint at the answer is obtained by looking again at the equation of motion

d2xµ/dτ2 + Γ
µ
αβ(dx

α/dτ)(dxβ/dτ) = 0. Remembering that d2xµ/dτ2 is not a general 4-

vector, this equation must have added two non-vectors in such a way that the ‘errors’ in

their transformation properties have cancelled to yield a covariant answer. We may say

that the addition of the term containing the affine connection has made the equation

gauge invariant. The term ‘gauge’ means that there are hidden degrees of freedom

(coordinate transformations in this case) that do not affect physical observables.

In fact, we have been dealing with a special case of

DAµ ≡ dAµ + Γ
µ
αβA

αdxβ, (1.40)

which is known as the covariant derivative. The equation of motion under gravity is then

most simply expressed by saying that the covariant derivative of 4-velocity vanishes:

DUµ/dτ = 0. One can show directly from the definition of the affine connection that the

covariant derivative transforms as a 4-vector, but this is a rather messy exercise. It is

simpler to use manifest covariance: the form of DUµ was deduced by transforming the

relation dUµ/dτ = 0 from the local freely falling frame to a general frame. If DUµ/dτ

vanishes in all frames, it must be a general 4-vector. It is immediately clear how to

generalize other equations: simply replace ordinary derivatives by covariant ones. Thus,

in the presence of non-gravitational forces, the equation of motion for a particle would

become

m
DUµ

dτ
= Fµ. (1.41)

There is a frequently used notation to simplify such substitutions. Coordinate partial
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derivatives may be represented by indices following a comma, and covariant derivatives

by a semicolon:

Vµ
,ν ≡ ∂Vµ

∂xν
≡ ∂νV

µ

Vµ
;ν ≡ DVµ

∂xν
≡ Vµ

,ν + Γµ
ανV

α,

(1.42)

and the notation extends in an obvious way: Vµ
;
α
β ≡ D2Vµ/∂xα∂x

β . General relativity

thus introduces a simple ‘comma goes to semicolon’ rule for the bootstrapping of

special relativity laws to generally covariant ones. The meaning and origin of the

covariant derivative is discussed further below, where two generalizations are proved.

The analogous result for the derivatives of covariant vectors is

DAµ ≡ dAµ − Γα
µβAαdx

β (1.43)

(note the opposite sign and different index arrangements).

This procedure is not completely foolproof, unfortunately. A manifestly covariant

equation containing only covariant derivatives is clearly a possible generalization of the

corresponding special relativity law, but it may not be unique. For example, since the

Ricci tensor discussed below vanishes in special relativity, it can be introduced into

almost any equation without destroying the special relativity limit: T
µν
;ν = R

µν
;ν has the

same limit as T
µν
;ν = 0. The best to be said here is that the more complex law is inelegant

and lacking in physical motivation; such more complex alternatives can only be ruled

out with certainty by experiment. According to the principle of minimal coupling we

leave out any such extra terms.

A more difficult case arises with equations containing more than one derivative:

partial derivatives commute, but covariant derivatives do not:

V
µ
;αβ − V

µ
;βα = R

µ
νβαV

ν , (1.44)

where R
µ
νβα is the Riemann curvature tensor discussed below. There is no general

solution to this problem, which is analogous to the ambiguity of operator orderings in

quantum mechanics encountered when going from a classical equation to a quantum

one. Sometimes the difficulty can be resolved by dealing with the derivatives one at a

time. For example, the natural generalization of Maxwell’s equations is clear in terms of

the field tensor:

Fµν
;ν = −µ0J

µ

Fµν = Aµ;ν − Aν;µ,
(1.45)

even though the combined equation for Aµ is ambiguous.

geodesics There is an important way of visualizing the meaning of the general

relativity equation of motion. In special relativity a free particle travels along a straight

line in space; in general relativity an analogous statement applies to the paths of particles

in spacetime. These are geodesics: paths whose ‘length’ in spacetime is stationary with

respect to small variations about them in the same way as small perturbations about a

straight line in space will increase its total length. This is familiar from special relativity,

where particles travel along paths of maximum proper time, as is easily shown by
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considering a particle that propagates from event A to event B at constant velocity.

This motion is most simply viewed from the point of view of the rest frame of this

particle. Now consider another path, which corresponds to motion in the frame of the

first particle. Suppose the second particle reaches position x at time tC, and then returns

to the origin, both legs of the journey being at constant speed. The proper time for this

path is the sum of the proper times for each leg:

τ′ =
√

(tC − tA)2 − x2 +
√

(tB − tC)2 − x2 < tB − tA. (1.46)

An arbitrary path can be made out of excursions of this sort, so the unaccelerated

path has the maximum proper time. This is the special relativity ‘solution’ of the twin

paradox, although it is actually an evasion, since it refuses to analyse things from the

point of view of the accelerated observer. In any case, returning to general relativity,

the equivalence principle says that a general path is locally a trajectory in Minkowski

spacetime, so it is not surprising that the general path is also one in which the proper

time is stationary with respect to variations of the path.

A slightly more formal approach is to express the particle dynamics in terms of

an action principle and use the calculus of variations. Consider the equation

δ

∫
L dp = 0, (1.47)

where p is any parameter describing the path of the particle (t, τ etc.), and δ represents

the effects of small variations of the path xµ(p). The function L is the Lagrangian and

Newtonian mechanics can be represented in this form with L = T −V , i.e. the difference

of kinetic and potential energies for the particle. The principal result of variational

calculus is obtained by assuming some arbitrary perturbation ∆xµ(p), expanding L in a

Taylor series and integrating by parts for a path with fixed endpoints. This produces the

Euler equation:

d

dp

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0, (1.48)

where ẋµ denotes dxµ/dp. In special relativity, this equation clearly yields the correct

equation of motion for p = t, L = ηµνUµUν , which suggests a manifestly covariant

generalization of the action principle:

δ

∫
gµνUµUν dτ = 0. (1.49)

If this intuitive derivation does not appeal, one can show directly, as an exercise in

the calculus of variations, that this yields the correct equation of motion. Now, this

formulation of the equations of motion in terms of an action principle has a rather

peculiar aspect: the integrand is the Lagrangian, but it must be a constant because

it is the norm of the 4-velocity, which is always c2. Hence the geodesic equation says

that the total proper time for a particle to move under gravity between two points in

spacetime must be stationary (not necessarily a global maximum, because there may be

several possible paths). In short, particles in curved spacetimes do their best to travel in

straight lines locally, and it is only the global curvature of spacetime that produces the

appearance of a gravitational force.
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conformal transformations A related concept is that of making a conformal

transformation of the metric,

gαβ → f(xµ)gαβ. (1.50)

The name ‘conformal’ arises by analogy with complex number theory, since such a

transformation clearly preserves the ‘angle’ between two 4-vectors, AµBµ/
√
AµAµBµBµ.

The importance of conformal transformations lies in the structure of null geodesics:

clearly the condition dτ = 0 is not affected by a conformal transformation. The paths of

light rays are thus independent of these transformations; this result will be useful later

in discussing cosmological light propagation.

1.4 The energy–momentum tensor

The only ingredient now missing from a classical theory of relativistic gravitation is a

field equation: the presence of mass must determine the gravitational field. To obtain

some insight into how this can be achieved, it is helpful to consider first the weak-field

limit and the analogy with electromagnetism. The simplest limit of the theory is that of

a stationary particle in a stationary (i.e. time-independent) weak field. To first order in

the field we can replace τ by t, and the spatial part of the equation of motion is then

ẍi + c2Γi
00 = 0, (1.51)

where Γi
00 = gνi(0 + 0 − ∂g00/∂x

ν)/2. So, as we guessed before via a rough argument

from time-dilation considerations, the equation of motion in this limit is

ẍ = −c2

2
∇∇∇∇∇∇∇∇∇∇∇∇∇g00. (1.52)

the electromagnetic analogy For a moving particle, it is clear there will be

velocity-dependent forces. Before dealing with these in detail, suppose we guess that the

weak-field form of gravitation will look like electromagnetism, i.e. that we will end up

working with both a scalar potential φ and a vector potential A that together give a

velocity-dependent acceleration a = −∇∇∇∇∇∇∇∇∇∇∇∇∇φ−Ȧ+v∧(∇∇∇∇∇∇∇∇∇∇∇∇∇∧A). Making the usual e/4πε0 → Gm

substitution would suggest the field equation

∂ν∂νA
µ ≡ Aµ =

4πG

c2
Jµ, (1.53)

where is the d’Alembertian wave operator, Aµ = (φ/c,A) is the 4-potential and

Jµ = (ρc, j) is a quantity that resembles a 4-current, whose components are a mass

density and mass flux density. The solution to this equation is well known:

Aµ(r) =
G

c2

∫
[Jµ(x)]

|r − x| d
3x, (1.54)

where the square brackets denote retarded values.

Now, in fact this analogy can be discarded immediately as a theory of gravitation

in the weak-field limit without any knowledge whatsoever of general relativity. The
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problem lies in the vector Jµ: what would the meaning of such a quantity be? In

electromagnetism, it describes conservation of charge via

∂µJ
µ = ρ̇ + ∇∇∇∇∇∇∇∇∇∇∇∇∇ · j = 0 (1.55)

(notice how neatly such a conservation law can be expressed in 4-vector form). When

dealing with mechanics, however, we have not one conserved quantity, but four: energy

and vector momentum. So, although Jµ is a perfectly good 4-vector mathematically,

it is not physically relevant for describing conservation laws involving mass. For

example, conservation laws involving Jµ predict that density will change under Lorentz

transformations as ρ → γρ, whereas the correct law is clearly ρ → γ2ρ (one power of γ

for change in number density, one for relativistic mass increase).

The electromagnetic analogy is nevertheless useful, as it suggests that the source

of gravitation might still be mass and momentum: what we need first is to find the object

that will correctly express conservation of 4-momentum. Informally, what is needed is a

way of writing four conservation laws for each component of Pµ. We can clearly write

four equations of the above type in matrix form:

∂νT
µν = 0. (1.56)

Now, if this equation is to be covariant, Tµν must be a tensor and is known as the

energy–momentum tensor (or sometimes as the stress–energy tensor). The meanings of

its components in words are: T 00 = c2 × (mass density) = energy density; T 12 = x-

component of current of y-momentum etc. From these definitions, the tensor is readily

seen to be symmetric. Both momentum density and energy flux density are the product

of a mass density and a net velocity, so T 0µ = Tµ0. The spatial stress tensor T ij is also

symmetric because any small volume element would otherwise suffer infinite angular

acceleration: any asymmetric stress acting on a cube of side L gives a couple ∝ L3,

whereas the moment of inertia is ∝ L5.

For example, a cold fluid with density ρ0 in its rest frame only has one non-zero

component for the energy–momentum tensor: T 00 = c2ρ0. Carrying out the Lorentz

transformation, we conclude that the tensor’s components in another frame are

Tµν = c2ρ0




γ2 −γ2β 0 0

−γ2β γ2β2 0 0

0 0 0 0

0 0 0 0


 . (1.57)

Thus, we obtain in one step quantities such as momentum density = γ2ρ0v, that would

be derived at a more basic level by transforming mass and number density separately.

perfect fluid This line of argument can be taken a little further to obtain a very

important result: the energy–momentum tensor for a perfect fluid. In matrix form, the

rest-frame Tµν is given by just diag(c2ρ, p, p, p) (using the fact that the meaning of

the pressure p is just the flux density of x-momentum in the x-direction etc.). We can

bypass the step of carrying out an explicit Lorentz transformation (which would be

rather cumbersome in this case) by the powerful technique of manifest covariance. The
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following expression is clearly a tensor and reduces to the above rest-frame answer in

special relativity:

Tµν = (ρ + p/c2)UµUν − pgµν; (1.58)

thus it must be the general expression for the energy–momentum tensor of a perfect

fluid. This is all that is needed in order to derive all the equations of relativistic fluid

mechanics (see chapter 2).

1.5 The field equations

Armed with the energy–momentum tensor, we can now return to the search for the

relativistic field equations. These cannot be derived in any rigorous sense; all that can

be done is to follow Einstein and start by thinking about the simplest form such an

equation might take. Our experience with an attempted electromagnetic analogy is again

helpful. Consider Maxwell’s equations: Aµ = µ0J
µ. The way in which each component

of the 4-current acts as a source in a wave equation for one component of the potential

can be generalized to matter if (at least in the weak-field limit) we are dealing with a

tensor potential φµν:

φµν = κTµν , (1.59)

where κ is some constant. The (0, 0) component of this equation will just be Poisson’s

equation for the Newtonian potential in the case of a stationary field. Since we have

already shown that −c2g00/2 may be identified with this potential, there is a strong

suspicion that φµν will be closely related to the metric tensor.

In general, we are looking for a covariant equation that reduces to the above in

special relativity. There are many possibilities, but the starting point is to find the simplest

alternative that does the job. The reasoning so far suggests that we are looking for a

tensor that contains second derivatives of the metric, so why not consider ∂2gµν/∂xα∂xβ?

There are six such creatures, corresponding to the distinct ways in which four indices

can be split into two pairs. As usual, such derivatives are not general tensors, and it is

not so easy to cure this problem. Normally, one would replace ordinary derivatives with

covariant ones and consider gµν ; αβ , but the covariant derivatives of the metric vanish

identically (see below), so this is no good. It is now not obvious that a tensor can be

constructed from second derivatives at all, but there is in fact one combination of the six

second-derivative matrices that does work (with the addition of appropriate Γ terms).

It is possible (although immensely tedious – see p. 133 of Weinberg 1972) to prove that

this is the unique choice for a tensor that is linear in second derivatives of the metric.

The tensor in question is the Riemann tensor:

Rµ
αβγ =

∂Γ
µ
αγ

∂xβ
− ∂Γ

µ
αβ

∂xγ
+ Γ

µ
σβΓ

σ
γα − Γµ

σγΓ
σ
βα. (1.60)

A discussion of the full significance of this tensor will be postponed briefly, but we

should note that it is reasonable that some such tensor must exist. The existence of a
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general metric says that spacetime is curved in a way that is revealed by non-zero second

derivatives of gµν . There has to be some covariant description of this curvature, and this

is exactly what the Riemann tensor provides.

The Riemann tensor is fourth order, but may be contracted to the Ricci tensor

Rµν , or further to the curvature scalar R:

Rαβ = Rµ
αβµ, R = Rµ

µ = gµνRµν . (1.61)

Unfortunately, these definitions are not universally agreed, and different signs can arise

in the final equations according to which convention is adopted (see below). All authors,

however, agree on the definition of the Einstein tensor Gµν:

Gµν = Rµν − 1
2g

µνR. (1.62)

This tensor is what is needed, because it has zero covariant divergence [problem 1.6]:

Gµν
;ν =

DGµν

∂xν
=

∂Gµν

∂xν
+ Γµ

ανG
αν + Γν

ανG
µα = 0. (1.63)

Since we know that Tµν also has zero covariant divergence by virtue of the conservation

laws it expresses, it therefore seems reasonable to guess that the two are proportional:

Gµν = −8πG

c4
Tµν . (1.64)

These are Einstein’s gravitational field equations, where the correct constant of

proportionality has been inserted. This is obtained below by considering the weak-field

limit, where Einstein’s theory must go over to Newtonian gravity.

parallel transport and the riemann tensor First, however, we ought to

take a closer look at the meaning of the crucial Riemann tensor. This has considerable

significance in that it describes the degree of curvature of a space: it is the fact that the

Riemann tensor is non-zero in general that produces the general relativity interpretation

of gravitation as concerned with curved spacetime.

How do we tell whether a space is curved in general? Even the simple case of a

surface embedded in 3D space can be tricky. Most people would agree that the surface of

a sphere is a curved 2D space, but what about a cylinder? In the sense we are concerned

with here, the surface of a cylinder is not curved: it can be obtained from a flat plane

by bending the plane without folding or distorting it. In other words, the geodesics on

a cylinder are exactly those that would apply if the cylinder were unrolled to make a

plane; this is a hint of how to proceed in making a less intuitive assessment of curvature.

Gauss was the first to realize that curvature can be measured without the aid of

a higher-dimensional being, by making use of the intrinsic properties of a surface. This

is a familiar idea: the curvature of a sphere can be measured by examining a (small)

triangle whose sides are great circles, and using the relation

sum of interior angles = π + 4π
area of triangle

area of sphere
. (1.65)

Very small triangles have a sum of angles equal to π, but triangles of size comparable to
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A

BC

Figure 1.2. This figure illustrates the parallel transport of a vector
around the closed loop ABC on the surface of a sphere. For the case of
the spherical triangle with all angles equal to 90◦, the vector rotates by 90◦
in one loop. This failure of vectors to realign under parallel transport is
the fundamental signature of spatial curvature, and is used to define the
affine connection and the Riemann tensor.

the radius of the sphere sample the curvature of the space, and the angular sum starts

to differ from the Euclidean value.

To generalize this process, the concept of parallel transport is introduced. Here,

imagine an observer travelling along some path, carrying with them some vector that

is maintained parallel to itself as the observer moves. This is easy to imagine for small

displacements, where a locally flat tangent frame can be used to apply the Euclidean

concept of parallelism without difficulty. This is clearly a reversible process: a vector can

be carried a large distance and back again along the same path, and will return to its

original state. However, this need not be true in the case of a loop where the observer

returns to the starting point along a different path, as illustrated in figure 1.2. In general,

parallel transport around a loop will cause a change in a vector, and it is this that is the

intrinsic signature of a curved space. We can think of the effect of parallel transport as

producing a change in a vector proportional both to the vector itself (rotation), and to

the distance along the loop (to first order), so that the total change in going once round

a small loop can be written as

δVµ = −
∮

Γ
µ
αβ V α dxβ. (1.66)

Why the minus sign? The reason for this is apparent when we consider the covariant

derivative of a vector. To differentiate involves taking the limit of [Vµ(x+δx)−Vµ(x)]/δx,

but the difference of Vµ at two different points is not meaningful in the face of general

coordinate transformations. A more sensible procedure is to compare the value of the

vector at the new point with the result of parallel-transporting it from the old point.
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This is the ‘observable’ change in the vector, and gives the definition of the covariant

derivative as

Vµ
;ν ≡ Vµ

,ν + Γµ
ανV

α
(1.67)

(for a contravariant vector; hence the minus sign above). For a scalar, the covariant and

coordinate derivatives are equal. Consider applying this fact to a scalar constructed from

two vectors:

(UµVµ);α = VµU
µ
;α + UµVµ;α = VµU

µ
,α + UµVµ,α

⇒ UµVµ;α = UµVµ,α − Vµ

(
Uµ

,α − Uµ
;α

)
.

(1.68)

Since Uµ is an arbitrary vector, this allows us to deduce the covariant derivative for Vµ

(different by a sign and index placement in the second term):

Vµ;ν ≡ Vµ,ν − Γα
µνVα (1.69)

The covariant derivative of a tensor may be deduced by considering products of vectors,

and requiring that the covariant derivative obeys the Leibniz rule for differentiation:

Tµν
;α = (VµUν);α = VµUν

;α + Vµ
;αU

ν = Tµν
,α + Γ

µ
βαT

βν + Γν
βαT

µβ. (1.70)

This introduces a separate Γ term for each index (the appropriate sign depending on

whether the index is up or down).

The Riemann tensor arises in terms of the connection Γ when we consider again

the change in a vector under parallel transport around a small loop. Since the connection

Γ is a function of position in the loop, it cannot be taken outside the loop. What we

can do, though, is to make first-order expansions of Vµ and Γ as functions of total

displacement from the starting point, ∆xµ. For Γ, the expansion is just a first-order

Taylor expansion; for Vµ, what matters is the first-order change in Vµ due to parallel

transport. The expression for the total change in Vµ then contains a second-order

contribution

δVµ =
(
Γ
µ
νβΓ

ν
λα − Γ

µ
λβ,α

)
Vλ

∮
∆xα dxβ (1.71)

(there is no first-order term because
∮
dxµ = 0 around a loop). Writing this equation

twice and permuting α and β allows us to obtain

δVµ = 1
2R

µ
αλβ

∮ (
∆xβ dxα − ∆xα dxβ

)
, (1.72)

where the tensor R
µ
αλβ is the Riemann tensor encountered earlier:

Rµ
αβγ = Γ

µ
αγ,β − Γ

µ
αβ,γ + Γ

µ
σβΓ

σ
γα − Γµ

σγΓ
σ
βα. (1.73)

The antisymmetric integral on the right of the expression for δVµ is clearly a measure

of the loop area, so the change in a vector under parallel transport around a loop is

proportional both to the loop area and to the Riemann tensor, which is therefore the




